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ABSTRACT 

HQn    ™s.rePort examines the Fourier  transforn method of restorinq 
degraded images of point objects.    The principal  conclusion      pported 
by this study is that the major problem in restoring these images  is 
the presence of poles in the restored image spectrum.    A series of 

functions of image degradation, for a computer modeled degraded 
imaging system   are presented to support this conclusion.    Also 
included is a thorough mathematical  analysis of the restored image 
spectrum. 3 
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CHAPTER I 
INTRODUCTION 

A. Statement of the Problem 

We know that atmospheric turbulence degrades the images of objects 
that are recorded by optlcil systems.    Mirages and star twinkling are 
typical examples.    It is important for some applications that we be 
able to extract as much information as possible from these degraded 
images concerning the actual object especially in cases ,vhere this 
object is an unknown quantity.    Because the human visual  system is an 
inefficient processor of this data,   it is necessary to resort to otner 
processing techniques.    Out of this need for more efficient processing 
techniques emerges the study of image restoration. 

The goal of this study is to specify the limits over which on« suci 
processing technique, the Pourier   transform method, does restore a 
turbulence degraded image so that it is a mre accurate ^presentation 
of the actual object.    For this study, we will  model a turbulence 
degraded imaging system, and apply the Fourier transform processing 
technique to the resulting degraded images to detemine the actual 
object. 

B. Background Discussion of Imaging in ti.c Presence of 
Atmospheric Turbulence ~~ 

Objects which are imaged through the atmosphere are degraded as a 
result of random temperature fluctuations in that atmosphere In this 
section a brief discussion of there degrading effects is presented. 

Imaging through a turbulent atmosphere is not a new phenomena, 
for man s own imaging system, the eye, has always had to contend with 
this problem whenever a temperature gradient was present along his line 
OT sicnt.    One of the most familiar instances today of the eye imaging 
through i tuvtiulent atmosphere occurs while driving along a highway 
which is reradiating solar energy.    As one looks at a car or the 
scenery some distance ahead, the objects seem to be dancing and are 
blurred because of the atmospheric effects.    In this case the phenorena 
is commonly referred to by the phrase "the heat is risina" 

The atmosphere is a gas and thus as it is warmed, its density, and 
hence its index of refraction, changes.    The wanner layers rise and mix 
with the cooler and more dense layers which are falling due to gravi- 
tational forces.    This mixing causes additional  refractive index 
changes to occur     These changes are referred to as refractive index 
fluctuations ana are obviously random functions of time which are best 
described by statistical means.    (See Tatarski   [1,2).) 

1 
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A light wave propagating through a non-turhulont atnosphore is 
focused Hy a telescope  to a specific point in the  image plane.    How- 
ever, when the propagation path contains refractive  index fluctuations 
one iiay consider effects occuring on two spatial  scales which degrade 
the ideal  imacrny situation.    First, for those refractive index fluc- 
tuations whicn vary slowly over a spatial  scale  larger than the tele- 
scope input aperture,  the image plane effect is  similar to that which 
occurs when a prism is placed in front of the telescope input aperture. 
That is, the incoming rays are bent causing the focused image to be 
shifted to a new Inage plane coordinate location.    Second, for those 
refractive index fluctuations which vary ranidly over a spatial  scale 
comparable to the input aperture, the result observed in the optical 
system image plane is that of image break-up. 

Both of these effects obviously perturb the incoming wave phase 
fronts.    By including a random time variation in these phase front 
perturbations, the resulting image plane pattern is a "dancing", blurred 
and broken-up corruption of the ideal image. 

C.    Mathematical  Concepts and the Fourier Transform Method of 
Image Restoration 

The familiar one-dimensional mathematical  concepts of the convo- 
lution -ntegral and the Fourier transform pair are extended to a Lwc- 
dimensional  generalization.    These two-dimensional  generalizations 
form the mathematical   foundation on which the Fourier transform method 
of image restoration is based. 

First, consider the extension of one-dimensional  linear system 
theory, conmonly associated with electrical engineerino, to the  cwo- 
dimensional linear imaging system.    It has been shown  (s^e Goodnan  [31) 
that the image plane intensity function and the object plane intensity 
function for an incoherent object are related bv a convolution integral 
of the form: " 

(1) Mvy2)
= |[ h^2-xi^2-y0 M*!«*]) dx] d>i 

^mnmam^mtm^miimMit^^t^miamttammimtiatm  ...---- ,, 

where I^^) and  UUi^i) are the image and object plane intensity 
functions, respectively.    This integral should be recocnized as the 
extension to two dimensions of the one-dimensional integral familiar to 
all electrical engineers, which relates the output ano input of a linear 
system.    As in linear network theory, the two-clmensional generalization 
has associated with it a unit impulse response h(x2,y2).    This impulse 
response is obtained by placing an intensity point source in the object 
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Fig.  1.    Imaging coordinate syste ms, 

plane     This impulse rerpon e is referred to as the intensity point 
spread function   (PSF) and is defined as: 

00 

(2) Ii(x2,y2) ■ h(x2,y2) = JJ h(x2-x1.y2-y1)  «(j^)  ^ ^ 

where «(Xj^) is a two-dimensional Dirac delta function. 

The integral in Eq,  (1) is valid only over that portion of the 
o jec   plane for which h(x2,y ) is independent of the'locatL of 
VXuyi).   This region over wFiich the integral is said to be soatiallv 

.nvanant is known as an isoplanatic patch and is analogous to the Ä 
ir.variance condition in electrical circuits. 

pair Ur"1"* a two~din,ensional generalization of the Fourier transform 

(3) f(x.y) ^F(KX,KV) 
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where the symbol <-» indicates that the two functions are Fourier trans- 
form mates, we have: 

(4) F(Kx.Ky) 

and 

(5) f(x.y) = 

-J(Kxx + Kyy) 
f(x,y) e dx dy 

00 

c p 

m* 
j(Kxx+Kyy) 

F(Kx,Ky) e J      dKx dKy 

In Eqs.  (4) and (5), Kx and Ky are defined as spatial frequencies with 
the dimep«nons of radians/im.   Applying this generalized Fourier trans- 
form to Eq. (U we see from the convolution theorem that: 

(6a)        I.(Kx.Ky) = H(Kx,Ky) I0(Kx.Ky)      . 

The function H(Kx,Ky) is known as the system modulation transfer 
function (MTF) and is analogou«  to the network transfer function used 
in linear circuit theory.    The functions I,-(Kx,Ky) and I0(KX>KV) are 
the spatial spectra of the image and object plane intensity functions, 
recpectively. 

The recorded image plane intensity will be a degraded form of 
Mxi.yi). the object intensity function, if the region between the 
object plane and the telesco^ input aperture is assumed to be a turbu- 
lent medium.    However, we can obtain the MTF of the system, including 
the turbulence effects, by placing a point source in the same isoplana- 
tic patch occupied by Mx^yi).   The input intensity function Mx^y,) 
can then be determined by dividing the degraded image plane intensity 
function spectrum by the system MTF (the quotient 

(6b)        I0(Kx,Ky) = 
M (Kx»Ky) 

H(Kx,Ky) 

is defined as the restored image spectrum (RIS)) and taking the inverse 
Fourier Transform of this RIS.   The result of these operations is the 
restored image, which is: 

(7) IRCX^J) ■ loCxj.yj) ■ ßJjrjJJoCKx.V e 

", MM^) cJ(Kxx+ Kyy) 

j(Kxx+ Kyy; 
dKx dKy 

(2ir)2 il H(Kx.Ky) 
where ^(x^yj is defined as the restored image. 

4 

dKx dKy 
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wh.vh     c /?-d0'üly ^wg turbulent medium, an isoplanatic region, 
winch was defined earlier as the region over which Eq. (1) is spatially 
invariant, is not defined by sharp boundaries but rather by more smooth- 
ly, varying transitions.   As the separation between the object and the 
point source increases, the phase front perturbations across the tele- 
S

aw l"T JPerture become different since the beams have propagated 
alone path* having sl-.ghtly different small  and large scale refractive 

^M!!  • CtUatL0?u-    TI1US' one would exPect that as the reference point 
source is moved through such transilion regions, the quality of the 
restored image would decrease to the point where it cannot be consider- 
ed as a valid restored image. 

D.    Summary of ^-nage Restoration Methods 

In the past, there have been various methods suggested for the 
restoration of turbulence degraded images.    Among these schemes have 
been vyavefront reconstruction  (Gaskill   [4], Goodman  [5])    maSum 

R! niiH?0r7nSt0rat ^-^ü1^"  ^6]); sPaiial ^HerU   Mueller 17], Reynolds  [7]); constrained deconvolution (MacAdams  [81); and the 
Fourier transform method (Harris  [9], McGlamery  Tiot)      These and other 

eTf Jts SSÄ^^^JT?« image SgUtlon resuU?ng from 
onH^i ^^.^f.^sphenc turbulence, such as image motion or 
Swchuk M) degradation (Huang [11], Andrews  [12], 

.<; it^ini?!6^"^*^ Is C0l?cerned with the Fourier transform method 
as it applies to the restoration of turbulence-degraded images      It 
should be pointed out. however, that this method is also applicable to 
some of the other sources of image degradation such as image motion. 

c.hQ 
Jht P^v1ouL "?!* involving the Fourier transfom restoration 

Mc!n!fa J-^e-ni?Ualltatlve in nature-    " has demonstrated this method 
using artificially generated or computer modelled image degrading 
effects.    In this study we emphasize the quantitative aspects of the 
restored image quality obtained using the Fourier transform method. 
iriL]moil q.Ua ilty.^ P^ented as a function of deviations from the 
ideal PSF which yielos the perfectly restored image. 

The question we attempt to answer in this study is, how large 

^n^Hfl'Zf-0"5 ^'T before the Fourier transform method fails 
^cL^ n ^00d lnia^ ^t0^10" ^ults? The results obtainec frem 
answering this question may serve as the input data needed to answer 

J^fiü. .SÄ"!^^! SUCh as' what is the isoplanatic patch size of a turb Ment atmosphere? 

E•    Organization of the Stud^ 

In Chapter I, we have discussed the image degrading effects of a 
turbulent atmosphere. We have described a typical imaging system and 
presented the necessary mathematical background required to apply the 

: 

- ■ ■ ■• — 



Fourier transform method of imago restoration to a turbulence degraded 
imaae. image. 

Chapter V is devoted to a summary of the entire study.    Also    a 
series of conclusions are drawn relating the results of this study to 
the task of restoring turbulence degraded images. 

F.    Summary 

The goal of this study, as stated previously, is to determine the 
limits over which the Fourier transform method of image restoration 
does indeed produce a valid representation of the actual input object 
A secondary goal  is to specify these limits in such a manner that they 

JSlJirVJhlT« idata
+-0r a fuUture study r8lat1n9 the "»tor»d image quality to the isoplanatic patch size. 

In Chapter II, we generate a mathemacical model  that describes 
the turbulence degraded wav^ironts across the input aperture of the 
imaging system as a polynomial series.    Using tfrs model we then 
derive an equation for the restored image spectrum (MS).    The actual 
restored image obtained by using the Fourier transform method can then 
be determined by calculating the inverse Fourier transform of this  RIS 
The discrete form of this RIS Is also presented in this chapter.    It " 
is this discrete equation that is programmed on a digital  computer 
which calculates the inverse Fourier transform (yielding the restored 
image) for various model  pi-ameters. 

In Chapter III we first define what is meant by the phrase "an 
ideally restored image".    Based on this definition we then note that 
the presence of poles in the RIS may cause the inverse Fourier trans- 
form of the RIS to be a very poorly restored image.    As a result, we 
then conduct an e:.censive analysis of the RIS and its poles, the out- 
come being a series of equations relating the number of poles and their 
positions to the degraded wavefront model  parameters.    These equations 
serve as input data for a quantitative analysis of restored image 
quality versus RIS pole position and number.    Finally, in Chapter III 
we define the parameters that we will  use to describe the quality of 
a restored image. * 

In Chapter IV, quantitative results of restored image quality 
are presented as a function of the degraded wavefront model parameters 
Three cases are thoroughly examined that relate these model parameters 
to specifically known RIS pole placement and number; the result is 
the definition of regions of successful image restoration separated by 
regions characterized by gross departures from the restored image 
quality criterion.    /> series of graphs is included for each case 
showing the regions of successful and unsuccessful image restoration 

-  -———— 1—■—^———     ■  ■ - - -   ... -  -« 
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CHAPTER II 
CALCULATION OF THE RESTORED IMAGE SPECTRUM 

fl.    Introduction 

In Chapter I we briefly descriDed the Jegradi'-g effects of the 
large and small scale index fluctuations on an imaging system.   We also 
indicated that the Fourier transform method will be the approach used 
in this study to restore such turbulence degraded images. 

In this chapter, we turn our attention to a more detailed mathe- 
matical  model of the imaging system from which  ..he restored image 
spectrum (RIS) is calculated in terms of phase front parameters.    The 
incoming turbulence degraded optical  phase front will  be expanded in 
terms of a general second degree quadratic equation.    Using this ex- 
pansion we then calculate the restored image spectrum for both con- 
tinuous and discrete values of the spatial  frequencies K^ and Ky. 
These results will be used in Chapter III where we thoroughly examine 
the RIS. 

B.    The Imaging System Model 

This imaging system model discussion is divided into two sections. 
First, the physical layout and coordinate system used are described. 
Second, the expansion for the turbulence degraded input electric fields 
(E fields) is derived. 

We choose the coordinate system in Fig, 2 for the imaging system. 

The (xo.yo) plane contains the telescope input aperture which is 
assumed to be square, with width W = 2x= 2y_.    This assumption sim- 
plifies the mathematics but does not detract from the fundamental 
results. 

The (x^yi) object plane is located a distance do from the input 
aperture and contains the reference point source and the object that 
we are imaging.    The medium separating these two planes is assumed to 
be a turbulent atmosphere having randomly varying refractive index 
fluctuations.    The {X2,y2) plane is located a distance d.- from the 
input aperture and is the image plane of the telescope.    The distances 
do  and d^  are conjugate distances since we are considering an imaging 
situation.    The region between the (x0,y0) and (xj.y?) planes is as- 
sumed to be void of any turbulent effects. 

Both the reference source and the object are assumed to be mono- 
chromatic point sources which are described mathematically by the two- 
dimensional Dirac delta function.    The separation between these two 
points is the distance ds.    The imaging system is assumed to be linear, 

--- 



Fig. 2.    Coordinate system for imaging system model. 
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thus, analysis of an extended object would require integration of the 
point object results over all points in the extended object. 

The field distribution over the input aperture, for a point object 
located at a finite distance d0 and in the absence of turbulence, is 
merely a spherical wave having uniform phase.    However, in the presence 
of turbulence and assuming negligible amplitude effects, we use 
Fneds  [141 assumption that the perturbed E-field phase fronts may be 
described by a general second degree quadratic equation involving x0 
and y0.    That is,  the instantaneous phase ^ may be expanded in the ft orm: 

(8a)       * = ax02 + bx0y0 + cy02 + dx0 + ey0 + f 

This formulation can represent any wavefront    that involves spherical 
and hyperbolic perturbations, wavefront tilt and an average phase term. 

An alternative representation for the instantaneous phase (j. which 
clearly defines these distortions is the polynomial series used by 
Collins  [15]. 

3 
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(8b)       i> =   I    a^ Fn(x0,yo) 
n=l 

where; 

F,(xn.yn) - i± ?\"0»J0 

/3    x0 

W w72 

F,(xn.yJ -4.^* 
W U/2 3V"0,J0' 

Fu(Xn.yn)  =^l|(^2+yn?  " ^  /   (W/2)2 
^^ o'-'o'      w 2J2    o 

F5(xo.yo) -Hf^o2 -yo2) / (w/2)2 

Each polynomial has a particular int^vpretation.    F^x^yg) v-epresents 
a constant phase contribution; F2(x0,y0) and F3(x0ly0) represent tilts 
in the x„ and y0 directions respectively; Flt(x0,y0) represents a spher- 
ical distortion; and F5(xQ,y0) and F6(xo,y0) represent hyperbolic 
distortions.    These functions are chosen to be orthonormal over a 
square of width W.    The coefficients a, b? c, d, e, and f in Eq.   (8a) 
are related to the coefficients al, a', a , a', a'  and a' by the 
following equations in which 

^ I 3 P    1  
w7jZ"Tw7?F   ' 

13 [5"     1       ,  ,        n 
N 2 x|2 (w/2)2 U^ + a5^ a = ii£ 

b = i 
.2   a6 W (W/2) 

- il IF   1 
W 2 ^2  (W/2)2 '"" 

d = — — a' 
W/2    W   2 

V<  +   a5) 

(a* - a') ■ Cu(a! - a«) 

L MMMMMMMMM •MM ----- 



W/2    W a^ 

f = £L . 5 a^ 
2 W 

1 

the Z7 der oi th        <   1   ^   W ^ ^ USed extensively throughout 
aUhr  oh Ih! ^iS.St^y be(ause of Hs conDutational simplTcity. 
cLfflc9 en^ tTf ^T > +

Cha^r IV are 9iveri in te^s of ^th sets of 
t^ Fn    ^    0 fac lltate interpretation in light of other work using 
the Eq.  (8b) expansion.    Thus, using the expansion in Eq    (8a) the tur 
bulence degraded field distribution over the aperture plane resultina 
from a point object may be expressed as: P resulting 

(9) Ea(Vyn) ■ e 
J (ax0

2 + bx0y0 cy0
2 + dx0 + eyn f) 

. 

s^stern'mode?.015^15^10" iS the 9eneral fon" assunied for the ™*^ 

th.« iho^! re1d of OP*1:«' * i5 a well known fact (see Goodman  I3 |) 
that when a lens system images an object, the field distribution over 
the input aperture and the field distribution over the image plane 
tV^ by a '0nstant ^m and a Phase tem from being exact Fourier 
transform mates.    This relationship 1s expressed as: 

m 

(10)       BWx^yJ = M
A AVt^ff E (x   v J(k/di)(xox2

+V2)       , 122        (27r)\dir    JJ ^Xfl^oJ« dx0 dy: 

-   no 

dfttTibätfSnsisSediief;!2'are""aperture and 1ma9e p'ane f1e,d 

If we define the spatial frequencies as: 

A kx, (11a) 

and 

K   = "^o x ar 

(lib)     Ky^ 

'     di 

then the more familiar Fourier transform expression is obtained. 

10 
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.. 

(12)       E^Xp.y,) - Ae1r^Jj*Ea(Kx.Ky)e 
j   Kxx.iKyy 

dKx dKy 

By substituting the above definition of spatial  frequencies into 
Eq. (9), the aperture plane E-field distribution becomes: 

j r(di/k)2(aKx
2+bKxKy+cKv

?) + (di/k) (dKx+eKv) + fl 
(13)       Ea(Kx,Ky) = e   L y     y y J . 

In this study, where we are interested in the instantaneous value of the 
E-field in Eq,   (13), we choose not to include the wavefront tilt terms 
(the d and e terms) and the average phase term (the f term) in the 
analysis of the point object.    The wavefront tilt terms merely shift 
the image to a different coordinate location but, for short exposures, 
do not actually degrade the image detail   (recall  the time shifting 
property in one-dimensional  Fourier transform theory).    The constant 
phase term is merely a multiplicative factor that drops 
the intensities are calculated.    Thus, the actual  field 
assumed for the imaging system model is: 

out anyway when 
distribution 

(14)        Ea(Kx,Ky) = 
j[(di/k)?(aKx

7 + bKxKy + cKy2)] 

The parameters a, b and c are defined as: 

0 
:; 

(15a) a = 27Ta1/(W/2)2 = 2TTa1/xm
i 

(15b) b = 2Trb:/(W/2)2 = 2Trb1/xmy 

(15c)      c = 2Trc1/(W/2)2 ■ 2Trc1/ym
2 

m 

where a], b! and Ci specify the amount of wave fro it distortion, in 
fractions of a wavefront,  at the edge of the input aperture.    Further- 
more, since the input aperture is now considered a spatial  frequency 
plane, the aperture dimensions define the system E-field spatial 
frequency band limit Km to be: 

(16) Km   =    A.    X, -m äp« ^2 

Rementer that the aperture has been assumed to be square with width 
W = 2xm = ^m- 

I 
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C.    The Continuous Restored Imac^e Spectrum 

Using the model discussed in section B ana the degraded aperture 
plane E-field given in Eq. (14), the restored image spectrum (RIS) Is 
next calculated. 

The first step toward finding the RIS is the calculation of the 
image plane intensity function and its spectrum in terms of the E-field 
given in Eq.  (14).    This image plane intensity function is 

„ 

, 

(17)      I(x2,y2) - Ei(x2>y2) Ei*(x: ,y2) 

where the * notation indicates the complex conjugate of the function. 
(Note that ZQ, the impedance of free  ipace, has been dropped.    It is 
merely a multiplicative constant that would be cancelled in later 
steps where ratios of intensities are formed.)    E.{x2ty.) is given by 

J(M2
+V2) 

dKx dKy (18)        Ei{x2.y2) = ^li2||w(KX)Ky)Ea(Kx,Ky)e 

where W(KX)I<J is the aperture function which t^kes into account the 
finite sizecfinput aperture      The function W(KX,KV) is defined as: X'^y 

. 

(19)        W(Kx,Ky) 
1 •Km <   Kv<   Ki m 

-^  Ky<-   Km 

0 otherwise 

From Fourier transform theory we krow that if: 

Ei(x:.y2)^Ea(Kx,Ky) 

then 

E^og«* Ea*(-Kx.-K ) 

and, additionally, that multiplication in the spatial plane is equivalent 
to convolution in the spatial frequency plane.    Using these f«ct$. the 
image plane intensity is  found to be the Fourier transform of the con- 
volution integral given in Eq.  (20) below. 

12 



(20)        I(x2.y2) ■ E^X^) Ei*(x2,y2)  - 

i        " 

WFJj   W(Kx-kx'Ky-ky) w*(-kx.-ky) 
oo 

Ea(Kx-kx,Krky) E*(-kx,-ky)  dkx dky        . 

The variables kx and k    are dummy variables chat have the dimensions of 
spatial frequency.       J 

by  letting kx = -kx and k    = -kv and multiplying Eq.  (20) by (2-:)2. 
we define the image plane function ^(x .y ) as: 

(21) Il(x2.y2) -   (2ir)2l(x2,y2) M  l^K^) = C(Kx,Ky)  = 

jj   W(Kx+kx>Ky+ky) W*(kx.ky) 
- 00 

Ea(Kx+kx.Ky+ky) Ea*(kx,ky)  dkx dky 

where IjCjfv.Ky) is the spatial frequency spectrum of I.(x0,y0).    The 
integrat in E^. (21) has the form of a correlation function «id hence 
is referred to as the aperture plane correlation function, which is 
defined as C(Kx>Ky). 

Substituting Eq.  (14) into Eq.  (21), we have: 
oo 

(22) I1(x2.y?) M  C(Kx,Ky) = |[w(Kx+kx,Ky+ky) W*(kx,ky) 
—oo 

ej(Vlc)2[a(ICx*kx)2   + b(Kx+kx)(Ky+ky) +c(Ky+ky)2) 

j(di/k)2rak 2 + bkxk   + ck 21 
e '        y     dk¥ dk x    y 

When the phase term involving only K   and Kv is brought outside the 
integral, we have: ' 

13 

■     ■- —^_^—^^^.^t. .. ■^_^_J,-„...^-.J   ,.. _     ,. nB-i^MIHMBiii^ri^fc^^aii^i^MiM   ■«■laifi i^M» 



-"-"- ii ■ .»■•■.MM it i i   si in.!■■ .111  i i nil 

W)        .,.(vy?)^C(Kx,Kv,.eJ'(d,-/k)?(^?tbK^+CV) 

! W(KA.W „.(kx.ky) eJ(dl/k)' b***WW*y] 

;. 

dkx dky 

The details of evaluating the above integral are carried out in 
Appendix A.    "he final  result of this calculation is presented below. 

(24)        liCx-.yJ «-» C(KX,KV) = X'-y^ 

(2Km -  IK 
Sin{(di/k)2(2aKx+bKy)'i(2Km-|KJ)]-| 

(2Km -  |KV|) 

[Sine  d. 

(di/k 

rsin((di 

L   (di/k 

)2(2aKx+bKy)M2Km-|Kx|) 

/k)2(2cKy+bKx)is(2Km-!K   |)} 

/k)2(2cKy+bKx)^(2Krt,-[Kv|) m  i,xy 

Note that C(Kx,Ky), being the transform of an image intensity function, 
has a spatnal frequency bandwidth twice that of the image plane E-field 
given in Eq.  (16).    The region over which C(Kx,Ky)  is defined is: 

-2Km<-  Kx:   2^ 

-2Km<   Ky<   2Km 

/?; (24!1,
iiNthe Product of two triangular functions  (2Km -  iKJ)  and 

izSi 7    Kyi) each of which is modulated by a function having a Sin x/x 
format (commonly referred to as a Sine function).    The degrading effects 
ot the atmospheric turbulence, as  represented by the parameters a    b 
and c. are introduced through the arguments of the Sine functions. 
Note that when a = b = c = 0 (i.e., in the absence of turbulence), the 
correlation function is: i» *"* 

. 

(25)        C(Kx.Ky)=   (a,.  |KX|)   (2«,.  |Ky|)      . 

This function is the two-dimensional generalization of the familiar 
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correlation of two onG-dinmsional  rectangular pulses.    For the two- 
diinnnsional case, Eq.  (?5)  is the correlation of the aperture function 
W(Kx,Ky) with  itself. 

The  reference source is also a point source; thus, Eq.   (14) also 
describes the resulting aperture phase distribution when there is zero 
separation (d   = 0) between the reference point and object point. 
However,  for finite separations between these two points, the atmos- 
pheric effects on the waves radiating from the two points will,  in 
general, be different.    These differences are incorporated in the 
aperture plane expansion for the reference E-field by defining the 
reference phase parameters as: 

(26a) a0 = a + Aa 

(26b) b0 = b + Ab 

(26c) C    =   C + AC 

where Aa, Ab, and AC represent small perturbations in the parameters 
a, b, and c, which describe the aperture plane E-field for the point 
object. 

The reference point aperture plane field distribution is obtained 
by substituting Eqs.  (26a),  (26b), and (26c)  into Eq.  (14) to obtain: 

(27)        Ea(Kx.Ky) = e 
J(di/k)2(a0Kx2 + boKxKy ♦ ctf) 

itykf ((a+Aa)Kx
2 + (b+Ab)KxK   +  (c+Ac)K 2) 

The modulation transfer function (MTF) is the system transfer 
function obtained when the reference input is a point source (see 
Chopt^r I).    Actually we have already derived this function in Eq.   (24) 
where the object was also assumed to be a point source.    Thus the MTF 
is obtained by substituting Eqs.  (26a),  (26b), and (26c) into Eq.  (24). 
Remember that the resulting function is the Fourie*- transform of the 
system PSF (see Chapter I).    The MTF is: 
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:, 

(28) H(Kx,KyH2Km-|Kx|) 

(2Km-|Kyn 

Sinl (di/k);'(2|(a+Aa)K)(+(bMb)K |'5(2Km-iKx|)} 

_ (rii/k);'{2|(a+Aa)Kx+(b+Ab)Kyj?'2(2Km-|Kx|) 

'sin((di/k)2(2[(c+Ac)Ky+(b^b)Kx]?s(2KrT1-
lKy[) 

.(di/k)2(2[{c+Ac)Kyx{b+Ab)Kx]js(2Km-|KyI) 

We now have calculated the spectrum for the image plane intensity, 
the aperture plane correlation function  (Eq.   (24)), and we have also 
calculated the MTF which is the transform of the PSF.    Next, we will 
use the MTF and the degraded image spectrum to calculate the restored 
image spectrum (RIS)  IR(K ,K )  using the approach given in Eq.   (7). 

(29)        IR(Kx,Ky) 
Ii(Kx,Ky)      c(Kx,Ky) 

H(Kx.Ky)        H(KX,K  ) 

Substituting Eqs. (15a), {15b)and    (15c)  into Eqs.  (24) and (28) and 
performing the division indicated in Eq.  (29), the restored image 
spectrum is calculated in terms of Kx and K , the spatial  frequency 
components; a,, b,  and Cj, the object phaseyfront parameters;  and \glt 
Ab1  and ACj, the reference phase perturbation parameters,    "me notation 
used for this RIS given be'ov has been chosen to emphasize the eight 
independent variables diseased above.    The notation to be used is: 

(30)        'RO^V = R(|<x'l<y'ai»bi»ci»Aai»Ab..Acl) 

Actual calculation of the RIS is straightforward but tedious; thus, 
it is carried out in Appendix B.    The result of this calculation is 
that the RIS has the mathematical  form: 

(31)        R(ICxtlCyt»l>bliC1,Äl1,Ab1,ACl) = 1 + 
2AaiKx + Ab^."1 

2aiKx + biKyj 

Cos{(27i/K^)J5(2Km-|Kx|)(2Aa1Kx+Ab1Ky)] 

-Sin[(2VV)^(2KmHKx|)(2Aa1Kx+Ab1Ky)|.Cot|(2./y)^(2Km-!Kx|) 

•^(aj+Aa^K^bj+Ab^Kyi 
2AC1KU + &b,K 

1 + -- 
i'vy       u^x 

2c1Ky ♦ b1Kx 

[J 

: 
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•?ä(2Km-|Kyi)(2Ac1Ky + tb^totpvjtfWZ^Kyl) 

.(2(c1+Ac1)Ky + (bj+Ab^Kx)}! 

For small  values of Aa,, Ab   and ACj (i.e., much less than 1.0), 
Eq.  (31) may be simplified by using the small  argument approximations 
for the Sin and Cos functions.    That is, for small values of the 
arguments, we have: 

Sin a - a 

Cos a ^  1 

where a may be the argument of any Sin or Cos term in Eq.  (31).    Using 
these approximations, Eq.  (31) is greatly simplified and may be re- 
written as: 

(32)   R(Kx,Ky,a1,b1,c1,Aa1,Ab1,Ac1) 1 + 
2Aa1Kx -t AbjKy 

2aiKx + biKy  J 

•fl - {(27r/Km2)^(2Km-|Kj)(2Aa1Kx+Ab1Ky)|cot{(2T:/Km2)^(2IVlKx|) 

.(2(a1+Aa1)Kx + (bj+Ab^Ky)}] 
2Ac1Ky ♦ Ab1K> 

2ciKy + biKx 

|l -{(2^/Km2)is(2Km-|KyI)(2AciKy+Ab1Kx)]Cot{(2T./Km2)%(2KIT1-|Ky|) 

.(2(c1+Ac1)Ky +  (bj+AbjMC^j       . 

At this point we have a mathematical  relationship which describes 
the RIS in terms of the parameters a , b , c,, Aa,, Ab., and Ac, which 
are associated with the turbulence-iriduced effects.    This expression is 
used in the next section of this chapter where the discrete form for the 
RIS is derived; it is also used in Chapter III where a thorough analysis 
of the RIS is conducted. 

17 
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D.    The Discrete Restored Image Spectrum 

The expression g ven in Eq.   (32) describes the restored image 
fKrUm a5 a contintous function; however,  restoration techniques 
!Äy    9. ;91tal  cou^ters re^re only a finite number of data 
samples, taken in comp.iance with the Nyqulst sampling criterion,  to 
describe a band-limited function.    Since we are interested in com- 
puter processing of turbulence degraded images, we now proceed to derive 
the discrete form of Eq.   (32) which we assume to be a valid repre- 
sentation for the RIS. H 

hv ca
Th?-diS^ret! RIS

J
f0r an actua1  ima9ing system would be obtained 

by sampling the degraded image and the PSF in the telescope image 
p ane      The resulting two sampled data arrays are then read into a 
digital  computer where their Fourier transforms are calculated using 
a fast Fourier transform (FFT) algorithm.     (See Appendix C for a 
discussion of the FFT.)    The ratio of the two discrete transforms 
(i.e.,  image spectrum divided by MTF) yields the discrete RIS. 

cn^-^V3^16 Spacin9 "^ in the im^ Plane and the quantitized 
spatial  frequencies are next calculated.    In Eq.  (24) the spatial 
frequency band limit for the image Intensity was found to be 2Km. 
For this study we assume that the images are sampled with 64 x 64 
sample resolution.    Thus, in accordance with Nyquist's criterion 
the sample spacing must be: «""«•, 

0 

. 

(33a)        AXJ = Ay2 ^ Tr/2K 

for which the quantitized spatial  frequency is: 

(33b)        AKX = &Ky = 4^64 - 2TT/64AX2= 27T/64Ay 

(See Appendix C for details). 

It is assumed for the model  used here that a telescope input 
aperture actually limits the frequency content of the intensity func- 
nlZl fit    x and ^M].-6:. 64AKX - 64AKy - 0); however,  the image 
plane functions are sampled with 64 x 64 resolution.    Thus, the image 
is sampled at greater than the Nyquist rate, which eliminates the prob- 
lem of aliasing in the spectrum. 

We are now equipped to calculate the discrete RIS from Eo    (32) 
by making the substitutions: 

(34a) 

(34b) 

PAK, 

qAK, 

18 
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where p and q = 0, ±1,2,•••31 and AKX and AKV are the discrete spatial 
frequencies given in Eq.  (33b). ' 

In terms of the "R" function notation introduced in Eq    (30)    the 
discrete RIS is given in Eq.  (35) below. 

(35) Discrete RIS = R(p AKX> q AKy, a^b^c^Aa^Ab^Ac^ 

. The restored image is obtained by taking the inverse FFT of the 
function given in Eq. (35). It is the quality of this resulting re- 
stored image that we discuss in Chapter IV. 

It is worthwhile to show the relationship between the discrete 
frequencies in the RIS passband and Km. the input aperturc halfwidth, 
where this halfwidth is expressed in units of spatial frequency (see 
tq.  (16J).    These relationships are presented in Fig. 3 for only the 
Kx components.    The Ky components are exactly the same since a square 
input aperture was assumed. 

RIS   PASS   BAND- 

xxxxxxxxxxxxxxxx 

INPUT   APERTURE  WIDTH •> 

APERTURE 
- HALF *■ 

WIDTH 

XXXXXXXXXXXXXXXJIXXXXXXX^XXXXXXXKXXXXXXXXXXXXXXXX 

WAlC.--»^   -l5/2A>cx.-^m 
0 l5i/2A/cx=ACm 

X" DISCRETE   SPATIAL   FREQUENCY   VALUES 

3IA/Cx=2/Cn 

Fig. 3.    Discrete frequency relationships. 
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D 
The RIS passband is seen to be twice the input aperture width Km which 
is the E-field pass band.    This fact results from convolving the 
aperture function W{Kx,Ky) with itself in Eq.  (20). 

E.    Summary 

At this point we have both a continuous mathematical model 
(Eq.  (32)) and a discrete model  (Eq.  (35)) describing the restorea 
image spectrum in tenns of the parameters ai, bi, ci. Aai, Abi, and ACI 
which describe the turbulence-induced effects in the received E-field 
The goal now is to use the discrete model, in conjunction with a high' 
speed digital computer, to set limits on the ranges over which Aa,. Ab,. 
and AC1 may vary for a particular choice of a,, b,, and c, such that" 
the restored image (i.e.. inverse FFT of Eq.  (35)) is a "good" approxi- 
mation of the actual point   object.    The details of this "goodness" 
criterion are discussed in Chapter m, section E 

. 

I 
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CHAPTER III 
ANALYSIS Or" THE  RESTORED IMAGE SPECTRUM 

A.    Introduction 

.ocfJV-15 chaP^r.we discuss in depth the concepts associated with 
TJlHi lmTS' their quality and the stored image spectrum (RIS) 
from which they are obtained.    First, we define what we mean by an 

jo?^ p^sen^nT^5 ^ -dl^V^^'S ^ f0-d t0 ^ -All f 
acrpnt r?n^ ti    2?    IS'    Physica1ly this theory is not difficult to 
RIS      T^nrU LPOf e^A^Sent 9r0SS ^«rtures from the ideally flat 
WS.    In order to facilitate a computer analysis of these Doles    a 

thele^oSLr^fZ5 ^ t^i rcla.ting the nun4^ 2S$loSi"      f 
(Eq    (14))! Parameters describing the E-field phase expansion 

descHted^^Sfr^?1? effectiveness of the restoration procedure 
aescnbed in Chapter I, it Is necessary to describe a criterion with 

c    Dterlit^9! ^^ imaf rmy-    Thftref0w' we conclude tMs 

ÄrldlSge" ^1^!°" " ParameterS Ch0Sen t0 deSCribe the 

B. Definition of the Ideally Restored Image 

In this section the ideally restored image is defined for the 
degraded aperture plane E-field model  presented in Chapter The 
mathematical expression for the ideally restored image is giOen for the 

non    ril'l^T'6 CaSeS-    And fl'nally' a brief discus'sio    of the non-ideally restored image is presented. 

The ideally restored image is defined in tenns of the eauations 
X^Zu^l*^ ^faded t-™* wavefronts!    The e'    pe      re 
plane E-field distributions for the object point and reference point 
are reproduced below in Eqs.  (36a) and (36b). respectively:       P 

(36a)      Ea(Kx.Ky) = e 
J(d17l<)2(aKx

2+bKxK +cKy
2) 

(36b) P tv   * >        J(di/k)2((a+Aa)Kx
2+(b+Ab)KxKv+(c+Ac)K 2) 

'-a^x' y' = e J J 

Ak^LI ^l.™ WhlCh Aa ^b = AC = 0. bo h Eqs.  (36a)  and 
(36b) have exactly the same mathematical fom.    This means that both 

^hrour^^^l6^1'".6^^^ the sarne manner as the^    ropagated 
En 7^hWn Urt)lJlent

+uatni0
J
Sphere-    ■mus' us1n9 the MTF obtained frem 

Eq.  (36b) to restore the degraded image characterized by Eq    (3ea)    we 
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define  the ideally restored image as the image obtained when Aa = Ab = 
Ac = 0.    This definition, an extension of Harris's  [9] work, does not 
restrict the values of a, b, and c.    Physically, this means that as 
long as both the reference wave anc" the object wave experience the same 
turbulence effects, as characterized by a, b, and c, the best possible 
restored image is obtained. 

Applying the condition that Aa = Ab = Ac = 0 (equivalently 
Äa. = Ab.  = ACj = 0) to the continuous RIS in Eq.  (32) and taking the 
inverse Fourier transform of this function, an expression is obtained 
for the ideally restored image. 

2Kni 

i    u j(Kxx
1
+Kvyi) 

(37a)      lR(x   y)=-^—JJ    R(KX,K .a ,b  ,c1,0,0,0)e y      dKxdK 

-2^ 

2Km 

■2Km 

^K \2 Sin ZILJC,    Sin 
(37c) -Pj     ÜLi   — 

V7T/      2IL.X, 2K 

2^] 

2Vl 2^, 

(38)        IR(p AXj.q Ax^ = 6(p Ax^q AyJ 

22 
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i   fF    j(Kxxi+Kvyi) (37b)       -(i^/f >• ,"Vi*,«y 

Note that the result obtained in Eq.  (37c) is not the ideal  point 
object,  5(xi,yi); however, in v.he limit as K^-»-- , Eq.(37c)  does 
approach this ideal  result, a fact well  known from diffraction theory. 
Thus, the system band limit 2Km has imposed an upper bound on the re- 
stored image quality even in the ideal case. 

When the discrete case (Eq.   (35)) is considered for Aa = Ab = Ac 
= 0  (equivalently Aa1 = Ab1 = ACj = 0), we must recall  that the FFT 
algorithm represents the function being transformed as a discrete 
Fourier series  (see Appendix C).    The results indicate that when 
R(p AKX> q AK , aj, bj, Cj, 0, 0, 0), which equals 1.0 at all  discrete 
frequencies, is inverse Fourier transformed; the resulting function is 
the discrete analogy to the Dirac delta function.    For this case, the 
discrete restored image is: 

MMUft*- ^ 



: 
*• • ere P and ^ are integers that specify the location of the rP«;tnrpH 

image in the 6   x 64 sample ^stored irage array ^o^d 

.. 
different (see Eos     3fi^ -H ^KU"^01"' ?nd **'* Po1nt m11 ^ 

 d f0' a ^V 0* *. degrading effects of finiteTaÜ fb   and 

I 
I 

AC. 

c-    Analysis of the Restored Image Spectrum (RT^ 

lentll^f ^Ih" LiMf*? su995sted ^ when Aa. Ab and Ac (or equiva- 

Srti'o   oc^rs     Ce     a no e^e^i t5)    Jj,." 52 "^ = " ^ 1nte3er> T oreatlv pvroorf thl jf'    » Peie exists), the frequen-y component will 

' it .hülfw^*1""0? f0m for the RIS is used in this section- however 

«..♦ ^turni!n9 to the RIS, which is  reproduced below in Eo    f39)    nntP 

n h sP? rfuTctlSnIrK'K t*?™ th^COt fÄ'^Ä "^ as tne function Z(Kx.Ky). assumes the value Z = nTT (n = integer). 

23 

■ 



(39)  R^.Ky.ij.bj.Cj.Aaj.Ab^ACj) 1 + 
2Aa1Kx +Ab1Ky 

ZajKx + bjKy 

|(2ir/Ki|2)%(2IC^|Kx|)(2aa1Kx+Ab1Ky)»CoJ(21t/K ;■ )12(2K -IK  I) 

•(ZUj+Aa^Kx + (bj+ab^Kyi i + 
ZACjKy+AbjKx 

2ciKy+biKx 

1  -{{2Tr/Kni2)u2(2Km-|Ky|)(2AC1Ky+Ab1Kx)|cot|(27r/Km2)^(2Kni-lKy|) 

(2(c1+Ac1)Ky +  (bj+Abj)^)} 

7    V 

Since both square-bracketed terms involving the Cot function have 
the same möthematical form, we need only analyze one such term.    The 
other term will  follow with the proper substitution of wavefront para- 
meters.    Thus, we need only analyze the term involving the a and b 
parameters.    The Cot argument, Z(KX,KV), for this term is given in 
Eqs.   (40a) and (40b) below. y 

(40a)      Z(Kx,Ky) =  (2n/Ki,2)l|{2Kli-|Kx|)(2aplCx + bpKy) 

(40b) (-/Km
2) -2apKx|Kx|-bp|KxlKy + 4apKniKx + 2bpKrnJ 

The parameters ap, bp and Cp are defined below as: 

(41a) ap = a1 + adj 

(41b) bp = bj + Ab1 

(41c)      cp = Cj + ACj 

Eq.  (40b)  is an odd function of Kx and Ky; that is, 

Z(Kx,Ky) = -Z(-Kx,-Ky). 
■ 
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i. 

.. 

Thus, the analysis may be further limited to the half plane defined by: 

K„ > 0 ■2Km Ky< 2K m 

The analysis for the second half plane is obtained by substituting 
-Kx for Kx and -Ky for Ky into the equations derived below and then 
multiplying by -1.0. 

As stated previously, the loci of poles are determined by the 
condition Z(Kx,Ky) = n^ (n integer).    The maximum number of such pole 
loci is obviously proportional to the maximum range of Z{Kx,Ky). 
Knowledge of this range, in terms of ap and bp, affords control  over 
number of pole loci.    This facilitates a computer analysis of the 
effects of these parameters on the restored image quality. 

the 

In order to determine this maximum range, we must first generate 
and Up and determine the maximum and minimum 

We wil    find that this analysis is divided 
an equation in terms of an 
values assumed by Z(KY,KV; ;r,Ny 
into two cases depending on the relative magnitudes of ap and bp, 

Using the first and second derivatives of Z with respect to Ky to 
determine maxima or minima with respect to Ky, we find that: 

(42a)      ^-=0 Kx= 2^ 

and 

(42b) 92Z 

Substituting Eq.  (42a) into Eq.  (40b) we find that Z(Kx,Ky)  = 0 for all 
Ky.    Since Eq. (42b), the second derivative test for maxima or minima 
fails, we deduce that there are no maxima or minima along the line 
Kx = 2Kr ^nr 

From the first and second derivatives of Z with respect to Kx we 
find, with respect to Kx, that: 

(43a) 

and 

(43b) 

3K. 
= 0 Ky "   b     (Km~Kx) 

32Z 
3Kx2 

4a, 

* 
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ä6/^' >hn ?!COnd ?eri"ati'e «•«« indicates that maxima do exist, for 
^sCtit rrö^e0; ft«! a,0n9 the ,,"e ^=(4ap/bp)(km-Kr

x,. 
D 

-(-e)« 

^Y = bn   * ^m- ^x  ) 

-?*' AC, 

'LINE OF MAXIMA    FOR^ >O 

t LINE  OF MINIMA     FOR r1 < 0 
bP 

Fig. 4.    Maxima and minima of Z(Kx,Ky). 

Evaluating Eq. (40b) along the line Ky . {4ap/bp)(Km-Kx). M h, 

(44)       ^x.«<y ■ ^ (VW) ■ (./V)(2^V - ^Vx + Bv^)      . 

■ ave: 

trom IZ'mTZu  ^ Z VerSUS ^ Variatl•("• With Kx ■ 0. we finO 
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ZQpTT 

Fig. 5.    Z evaluated along line of maxima or minima vs. K 

(45)        Z(0.Ky) =  (./V) Zbp^Ky      . ' 

which has a maximum at K   - 2K,, as seen in Fig. 6.    Thus, when hD > 2aD 
the maximum value of Z occurs at (0,2Km).    Since Z has been showfi to   P 

oe an odd function of K , the minimum must occur at the point (0,-2KJ 
as shown in Fig    6      Thfis, the maximum range of Z, the quantity we are 
interested in,  for bp > 2ap is: 

(46) zmax " zmi n ■ 4bpTr - (-4bp1T) = 8bp7T 

^ntHh^H^V'" Eq; (46).determi"es the maximum number of pole lod 
contributed to the restored image spectrum. 

from ?^e^SR^ 2V« ^T^"1 situation exists.    The results obtained 
from Eq.  (43a)  anö Fig. 4 indicate that the maximum value of Z with 
respect to Kx occurs at the intersection of the lines Ky = 2Km and 
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Fig, 6.    Zmax and Zm^n as a function of Ky. 

K   = (4ap/bp)(Kfn-Kx) or, by substituting Kv = 2Km into Kv = (4aD/bD) 
(VKx)» at the point: * v    v 

(47a)      Kx = Ml - -£-) 

(47b)      Ky = 21^ 

This result, which is valid for -2ap<   bp<   2ab, is shown in Fig. 7. 

Consider a (K ,Z) plane cutting through Fig.  7 along the line 
Kx = Kxö.    By substituting Kx = Kx   into Eq.  (40b) and regrouping terms, 
we obtain: u 

(48)        Z(KXo.Ky) =  (Tr/Km2)^2bpKm-bpKXo)Ky+4apKmKXo-2apKXo2 

which is Ci-aphed in Fig. b. 
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 , 

**Kt 

Fig.  7.    Location of Imx for -2ap <   b   <   2a 
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Fig' 8-    zmax and zinin dS a unction of Ky. 

In Fig. 8 it is seen that the maximum value of Z, with respect to 
Ky, occurs along the line K   = 2^.    In Fig. 7. it was demonstrated 
that, for -2ap<   bp<   2ap, the maximum value of Z with respect to Kv 
occurs along the   Tw j/- Kjl - (b /2ap)).    Evaluating Z^ {fro/ 
hg. 8) at the point (Kx = Km(]-(bp/5ap)y,Ky = 2KJ. we flM? 

(49) -max 
bn2 

2ap + 2bp + -H- 

Since the Z axis intercept in Fig. 8 will always be greater than 
or equal to zero for 0 < Kx < 2Kr the minimum value of Z will always 
occur (see hg. 6) at the point (KX = 0, Kv = .2Km),  thus: 
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paipiBiniimw 

u 
(50) ^rin ■ -4y     . 

Using Eqs.  (49) and (50),  the maximum range for Z, when  -2a„ :   b   <   2a 
is calculated to be: P       p p 

b 2 

(51) zmax - Zmin = (2ap + 6bp + ^i ^     . 
P 

In this case the magnitudes of both the parameters aD and bD contribute 
to the total number of pole loci present in  the RIS.    Dividing the 
maximum ranges for Z found in Eqs. (46) an-J (51) by », and then sub- 
stituting 

ap = aj + A«, 

bP = bi + Abi      • 

we find that the maximum number of pole loci Mp (M    integer) is: 

(52a)      for     2(a1 + baj <   b1 + &b     , 

(•■'2b)     Mp = 8!bi + AbJ 

and for 

(53a)     -2{al + uj <  bj + Abj <  2(a1 + Alj)      . 

.      .                                                                   (b   + Ab )2 

(53b)     M^ =    2(3. + Aa,) + 6(b1 + AbJ + _1 L_ 

2(1, ♦A«!) 

The gross characteristics of the pole loci  in the RIS are determined in 
Eqs.(52b) and (53b) by the parameters a, and b,, which are a measure of 
the wavefront distortion at the edge of the input aperture in fractions 
of a wavelength;    however, the perturbation parameters Aa,  and Ab,  con- 
tribute in two important ways.    First, they may increase or decrease 
the value of Mp by a sufficient magnitude to actually introduce or 
remove a loci of poles.    Second, regardless of whether they do introduce 
or remove a loci of poles, the perturbation parameters will  always tend 
to shift the location of the existing loci of the poles in the KXKV 
plane.    This second point is important in terms of the discrete case in 
which a small  change in M1 or Abi may result in a discrete frequency 
component being evaluated precisely at a pole.    The inplications of 
this event are covered in Chapter IV, section B. 
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analv^ ifl^fJ ^Jlf Sh0Uld be COvered before completing this analysis of the RIS.    This point involves the term 

(54) AZ ■ ./yC-ZAa^jKj-^^KjK^Aa.K^^Ab,^] 

^n ChantpJ ?      L^  C0    ^V^ " Eq-   (39)-     lt was stated Previously 
ih.n ?Pn      11' SeCtl0n C' that the rdn9es for Aa,  and ab, are much  less 
Ho .  *!; tJhUS' sl;ce

(
AZ.and (^Z/.KX) and (oAZ/.Ky) are all  propor! 

7 ?f c^n      H ^rt^bat'or} Parameters, this implies that the function 
£ IS small  and slowly varymg in both the Kx and Kw directions      This 

T^l^T te^ then tends t0 rnodulate tSe ™ unction ?n such 
thi. In? 11 fe thl *?i Undr the Cot function.    In the next chapter 
thTs will be demonstrated to be particularly important near RIS poles. 

The most significant results obtained from the RIS analysis are 

tteTril.SS;J52b)
<
and {"b)-    These ec'uations are emphasized be ause 

oStLnlpH tn h maX1mUm nUfer 0f RIS pole loci' which have been hy- 
?o th. n!^     * aVe a ^9niflcant faring on the ^stored image quality, 
Le EQ^alIndiandeS^ibe th? turbulence degraded input waves 

rh Vq ;,/    a) and  (36b))-    These relationships will  be used in 
2 t£L!i  SeCtl02 5' Whe/e actual  inia9e restoration is performed on three classes of degraded images. 

D.    The Defocused Image Case 

for JHuM P0\nh a Parti^]ar c1ass of ^graded images is selected 
tor anales      This class of ^ages TS distinguished by the absence of 
the coupling between Kx and Ky in Eqs.   {36a) and (36b):    That is. we 
set the parameters b = Ab = 0y(or equivalently b1  = Ab   - 0) In ilf 

tionar?^S
rnnn^-V1Hn9-th^WaVefr0nt Parameters/ A^evievl of these equa- tions is contained in this section. 

rerord?nn n? lof thlS,case  ^.J-  b, - Abj - 0) corresponds to the 
recording of defocused images in the telescope image plane.    This case 

tlTA ^nH t    ^"i0?6 'I Sutudyin9 the ^^tionship between poles 
the RIS and the quality of the resulting ^stored image.    It is useful 
in^i"56 thJ associated mathematics are simpler than those for the case 

e and thP^Hn ^ ^ l^1^ yet l0ci of Poles are P^ent ? the RIS and they do tend to degrade the restored image quality. 

rh.nti^M SI1??!"9 discussion, the general equations derived in 
Chapters II and III are restated with the cross-coupling terms b and Ab 
(or equivalents b, and AbJ set equal  to zero 

rPwrJlL'Jr^-  Plane.E-field distribution taken from Eq.   (36a 
rewritten for this special  case in Eq.   (55) below. ) is 

.. 
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(55)        Ea(Kx,Ky) = e 
j (cii/k):,(aKx-   + bK?) 

Assuming this phase distribution, the degraded image spectrum (apert 
plane correlation function, C(Kx,Ku), and the MTF/ri(Kx,Kv), have th 
following forms  (the general equations are  (24) and (28)) 

(56)        C(Kx,Ky) = (ZKm-lKxl) 
$in(di/k)2(2Km-|Kx|)aKx 

(di/k)2(2Km-|KxI)aKx 

ure 
e 

(ZKu-lKyl) 
Sin(di/k)2(2Krt,-|Kv|)cK. 

(di/k)2(2Km-|KJ)cKv 

(57)        H(Kx.Ky) = (2Km-|Kx|)- 
Sin(di/k)2(2Km-|Kx|)(a+ Aa)Kx 

(di/k)2(2Km-|Kxl)(a   + Aa)K, 

(2Km-|Ky|) 
(di/k>2(2Kmrir[j7c~rrc)i<7 

Note that Eqs.  (56) and (57) are separable into two factors, one in- 
volving only Kx and the other involving only Kv.    Thus the behavior 
of each factor is graphed in a single figure (Tig. 9), where K repre- 
sents either Kx or Ky and y represents a or c.    The total function is 
then obtained by multiplying two such diagrams together at each point 
in the KxKy plane. 

(from"™6 "^r60 1'ma9e sPectrum (RIS) for the special case becomes 

(58)        R(Kx,Ky.a1,0.c1.Aa1.0,Ac1) =       ^    = 
H(Kx,Ky) 
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.i 

Mg.  9.    Graph of (2K -|K|) Sinc[(di/k)2  (ZK-jK] )YK]. 
m 

\!(+^H{2v/Km''){2^lKy])^^ CpKy 

Note that each factor in Eq. (58) involves only Kx or Kv; thus, the 
overall inverse transform is the product of two one-dinifensional inv 
transforms. verse 

A /I^d^S^rene f?^0f Eq- (58) is Gained by substituting Eqs.(34a) and (34b) into Eq. (58) to yield: a   H    v    a/ 

(59)        R(p AKX, q AKy, av 0, Cj, Aa^ 0, ACj)       . 

Pnc    JSSkl!U,,b5r/2L?0leJ0
J

c1 for th1s sPecial case is obtained from 
Lqs.  (52b) and (53b).    Obviously bp = 0 satisfies Eq. (53a); thus the 
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number of pole  'oci  is 

(60a) Mpx = 2(a1 + Aa,) = 2|ap|   . 

«f'JujM^l^^i?8? the/Kx tem in Eq-   (58) contributes 2aD loci of poles In each half plane    i.e., Kx < 0 and Kv > 0)      SimilarPresults 
are obtained .or the Ky term in Eq.  fsi). whereVe L K   ha?f pi  nt 
(i.e., Ky ^ 0 and K   > 0) each contribute ^ 

(60b) Mpy = 2(0! + Ad) - 2|cp| 

o^qs! ^Jo-and'Vobt" ^ ^ ^ ^ ^^ ^^ ^ 

solvinTthfeqL^on:0' POleS ^ ^^ * ** straight lines by 

(61)        Z(Kx,Ky) = n,r 

where Z(KX Ky) is the Cot argument from Eq.  (58) and n is an inteaer 

£ 0 / xTk'JS1^1^1^ ^ll^ k\W Plane'de^d 
ditions 2e obtain m      y- ^    Solvin9 Eq-  (61) for these ™- 

(62a)      Z(Kx,Ky)=-^   KJ + ^ K m m 

which reduces to 

(62b)      Kx = ^ ± K 

Km2 

2ap-n 

m 

m 
2ar 

Z ««u. «   »H }   VleW 0J ih''se po'e loc1 ,s Presented (n Fig. 10.   The 

urzWcJti^ rt sei?fi
1r,sriS)u,,t the po,e ,oc1 

value^V^ tc? o3? ^^^fÄ t^!??" am0Unt *" a "" lar9er 
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RESTORED 

-r(2*m-|*xl) Qp/C,, 

Ö 

LOCATION   OF K%   POLES 
FOR   l/2<op<l 

Fig. 10. Location of pole loci in the RIS 
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i. 

At this point, all  the significant equations from Chapter II  and 
Chapter IIIA, B and C have been rewritten for the special  case in which 
there is no cross coupling between Kx and Ky (i.e., hl = Ab] ■ 0). 
Note that Fig.  10, which illustrates the location and shifting of pole 
loci, is a very important graph and it is referred to several  times in 
Chapter IV where actual  image restoration of degraded images having 
zero cross coupling between K   and K    (i.e., defocused image case) is 
discussed. y 

E.    Restored Image Quality Criterion 

fh-   ThlS s5ct'i0" is devoted to a discussion of the criterion by which 
t Lc^0^ q^ 1ty ^^d.   Among the authors who have addres ed 
themselves to this problem have been Linfoot  [161  and Barry  [I7j      They 
have emphasized that it is desirable for such a Criterion to reflect a 
quan native rather than subjective measure of the rlsTored image 
KI\   iL For

t
thl5 r6950"? Jhree parameters, the ^stored Strehl  ratio 

(Sr), the restored image integral scale (r) and the restored imaae 
Zlmr^V™   ^Uer^ selected ti fcscHtetS ^slciXge 
quality.    A discussion of each of these parameters and the-r optimu? 
values comprises the material discussed in this section 

The Strehl ratio  is defined as: 

li(0,0) 
(63)       S 

^(0,0) 

Hon   H i(-'  ).1S the point spread action (PSF) of the turbulence 
degraded imaging system anJ 1^0,0) is the PSF  for the ideal turbulence 
free system.   However, for this study in which we are interested 
restored image quality, we define a restored Strehl ratio   as: 

IR(0,0) 

in 

(64)       Sr = 
ll(0,0) 

y^tt.1^:?! 1S S* ^s*ored image obtained from the RIS and 1^0,0) 
is the   deal y restored image.    For the optimum case (with a ooint 
source input) the ideally restored image has the falue Mo!o) = 1 0 

StrJh   Mt?! fsi? r^T llt0 Eq- (64)' we see that tJe restored Strehl rat.o   (Sr) is merely the  restored image value at the coordinate 

sf?iR(0.0)n: IQ""1  ^ ^ 1'deally reSt0red imge  ('ee Eq    (38)) 

spati 
The restored Strehl ratio yields both spatial domain (x^y,) and 

f^J?^nCl{K^yyinfomat'or) about the ^stored image.1 In 
HTs of the ^t^H^"131"' S: ll the rat1'0 0f the central  ^ten    ty peaks of the restored image and the idea   image.    For the soatial 
frequency interpretation, we recall that, in terms of Fourier 
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transforms, IR(0,0) and I^O.O) may be written as; 

2Km 

(65a)      IR(0,0) -  (l/27T)2^f,   R dKx dKy 

•2K. m 
and 

2^ 

(65b)      1^0,0) = (1/271)2^   i.o dKx dKy      . 

-2Km 

Eqs. (65a) and (65o) are the average value of their respective spatial 
frequency spectrum.    This means that the restored Strehl ratio may also 
be thought of as the RIS average value since the average value of the 
ideally restored image spectrum is 1.0 (all  frequency components in the 
spectrum of the ideally restored image are equal  to 1.0).    Thus, the 
restored Strehl  ratio, which has the optimum value of 1.0, gives us a 
measure of how closely the restored image and the RIS approach their 
ideal  values. 

The integral scale rn is defined as: 

.. 

(66)       r0 = + 

6n3 
IR(p Ax, q Ay) 

"    IR(0.0) 

where r   is defined such that the volume of a cylinder with height 
In(O.O)  (restored image value at the origin) and radius r   equals the 
volume under the restored image intensity function I^x^y,).    This 
definition is illustrated in Fig. 11.    The parameter r0 gives a measure 
of the spread of the restored image.    The optimum value of r0 is 
r0 = I/ZTT which occurs when the integral  in Eq.  (66) equals  IR(0,0). 

If Eq. (65) is divided by l/ZT, a normalized integral scale is 
defined as 

(67) r = /ü" 

for which the optimum value of r is r = 1.0.    It is the normalized in- 
tegral scale that will be used in this study to express the spread of 
the restored image. 
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*I, 

S^ IB(0.< 

Fig. 11.   Diagram illustrating the definition of r 
the integral scale. c 

The final restored image quality parameter is the restored Image 
mean squared error (cms).    This parameter is defined as: 

(63) 'ms 
1       63   63 

= W2    I     I   \lR(P AX
> q Ay) - Mp AX, q tyW' H      p=0 q=0  ^ J 

63   63 
I     1 

p=0 q=0 

where IR and Ij are the restored and ideal images, respectively. 

The parameter ems gives a measure of the mean squared error 
between the actual restored image and the ideally restored image. 
Obviously the optimum value for Gms is zero. 
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Next in the discussion of the restoration parameters is the appli- 
cation of the computer processing techniques to the ideally restored 
images defined by Aa,  = Ac,  = 0 and finite a, and c,   (see Chapter III-B), 
The resulting restoration parameters calculated using Eqs.   (64),   (67) 
and (68) are defined as bench marks against which the parameters calcu- 
lated for images having finite valued .\al and .\cl  may be compared. 

After numerous computer runs using various values of a,  and 
(Aa   = Ac, = 0), it was verified that the bench-mark 
pendent of the values selected for a,  and ci. 

values are inde- 

xable 1 lists both the theotetical and the actual computer 
calculated values for each parameter. 

TABLE 1 

Calculated Value 
Parameter     Theoretical Value      (AaT = Ad = 0) 

Sr 
r 

cms 

1.000 
1.000 
0.000 

1.000 
1.000 

8.553 x 10"10 

The discrepancies between the theoretical and calculated 
values of cms represent inherent computer processing errors; however, 
these errors are sufficiently small to be insignificant.    Thus, the 
calculated values are accepted as the bench-mark parameters. 

The rang J for Sr, r, and e which define a successfully restored 
image must be specified. A successfully restored image will be defined 
in this study as an image with the following properties: 

. . 

(69a)     0.5 < 5r <2.0 

(69b)     0.5<   r <2.0 

(69c) ems <0.1 

The range for Sr allows a ±3 db deviation in the restored image central 
peak intensity.    The spread of the restored image, as expressed by r 
may vary by a ratio of 2:1 while the mean squared error must be less' 
than 10%.    These values for the quality parameters were selected on the 
basis of preliminary computer processed images.    Obviously either more 
stringent or more relaxed requirements could have been imposed; how- 
ever, this particular choice serves as a reasonable starting point for 
defining a successfully restored image. 
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. This completes the discussion of the restored image quality 
criterion.    The quality parameters,  restored Strehl ratio  (Sr), integral 
scale (r), and mean squared error (eng), were defined and the limits 
within which successful image restoration occurs were specified for 
these parameters. 

F.    Summary 

This chapter has befc.i primarily devoted to the discussion of 
restored image spectrum (RIS) and the restriction of this general 
analysis for the defocused   case in which there is no cross coupling 
between the Kx and Ky variables.    The most significant result of this 
analysis is a series of equations  (Eqs.  (52b),  (53b).  (60s)  snd (60b)) 
relating the nurrber of pole loci  in the RIS to the wavefront parwcters 
V bP and V 

A discussion of the ideally restored image and the restored image 
quality criterion, which determines whether a processed image may be 
classed as a successfully restored image, were also discussed in this 
chapter. 

. . 

^ . 
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CHAPTER TV 
RESULTS 

u 

A. Introduction 

In this chapter, three classes of turbulence degraded images are 
restored using a computer processing technique which involves the 
Fourier transform method of image restoration.    (This method was dis- 
cussed in Chapter I.)    Each class of degraded images is defined by the 
number and location of the pole loci present in the RIS.    The success 
or failure of the attempted restorations is then discussed in terms of 
the restored image quality criterion  (see Chapter III, section E). Graphs 
which present the behavior of the restored image quality parameter as a 
function of the wavefront perturbation parameters f,al and aCi are 
included.    The allowable ranges for ABJ and iCj over which successful 
image restoration does occur are defined with reference to these graphs. 
These limits on Aaj and ACj are the primary goal of this study and 
they will  be used to define the ranges of successful  image restoration. 

B. Restoration Results 

It has been suggested in Chapter III, section C, that the presence 
of poles in the restored image spectrum (RIS), as determined by the 
parameters ap(=a1 + M1) and cp(=c1 + ACj), is intimately related to 
the success or failure of the image restoration process.    The remainder 
of this section is devoted to demonstrating the inportance of these 
pole loci and their effects on the restored image quality.    In this 
chapter, a series of computer processed restored images is generated in 
order to determine whether the presence of poles does indeed influence 
the allowable ranges for the parameters üAY and &Ci.    f:ach restored 
image is obtained by calculating the discrete RIS (Eq.   (59)) and then 
applying the inverse FFT algorithm to this function. 

Because only those cases where Bi = Cj and aaj = f.cl are being 
considered, all  the results derived throughout the remainder of this 
chapter for aj and Aaj apply identically for q and aCj. 

The series of computer processed images was divided into three 
unique cases.    For each case, 
describes the gross wavefront 

the value of the parameter a,, which 

aperture, was specified so as 
location in the RIS (see Fig. 
restored image was calculated 
n + +0,1,2,«••41).    The special  situation In 
ponds to that of the ideally restored image. 

distortion at the edge of the input 
to introduce the loci of poles at a known 
10).    For each selected value of a,, a 
for perturbations M1 = n(0.006A)   (where 

which Aaj =0.0 corres- 
It occurs only when the 

degraded image and the PSF have experienced exactly the same turbulence 
effects characterized by the particular choice of a^    The argument Z, 
which is taken from Eq.   (58), is graphed for the three cases in which 
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1! 31 ' S^5^ 0:5A or 0-75A  (equivalently, in tenns of the polynomial 
coeffTcients introduced in Eq.   (8b)  these three cases are given by 

2TT 

Cy^Xl m 
-^O.BOx) or Zv 

r v 2 
Vm 

{0.75A) 

while as = a6 = 0) in Fig. 12.    This graph, which is similar to those 
used in Fig. 10, presents the locations of the pole loci  in the RIS 
he x s and o s along the Kx axis represent the initial locations 

(when Aaj = 0.0) of RIS pole loci  for Cases  11 and III,  respectively. 
These initial pole locations are defined by the intersections of the 
Cot argument with the lines Z = mr. 

tha 
Each case has a unique characteristic over the processing ranqe 

t extends from a    « yc 

(70) {al - 0.246)< 'ap<   (dj + 0.246) 

27r 
7r(2ACm- 1^1)0  K 

CASC IE      0^ 0.75X 

CASE H   0,= O.bOX 

-CASE I   a,«0.25X 

m p"x 

Fig. 12.    Location of the points at which Cot argument 
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^•.«r'tÄÄSr.?!no lilt in ,ntr,ducJd *»*> ** an > a    ^   . n Sl? .    range ot ap.    Case II TS unique in that when 

Cases I,  II and III    rvwruJliu     r    i      S1?15' ca1cLllated from 
function of Aa,. the nTrtu^tinn'n Each^uality ^tor is graphed as a 
when Aa, = n n1;.   f P^^^tion^parameter.    Note that on each graph, when Aa, = 0 O^a   - a       Sr     i nPi 

are the expected res ulk for the idpIllV;!^ ^ ,S a minimum-    T-ese 
all  graphs independent of the choice Jor a '^ *"* 0CCUr 0n 

r and Cm are «Jot^län^^«^..^^^-^ 'Z"**" 
point u. = O.IU     This bpha«<m. „f   9   7     respective bounds at the 
that, in1 the remain.n 'o^1^ ^V^"?^ reinforces the assurption 
restored ,«„ Cannot

9
be

P ^U^i^^^tVol^ %%£*?> 

.. 

(71) -0.246X < Ali < O.IU 

where -0.246x is the lower 
processing limit for Aa,  (see Eg.   (70)) 

Aa, 

'« vary errnically ' HiSdenVitelTthlse0^;" P?rametere Sr, r, and 
in which the restoratinn n^J.1.     .,    • ! ''"«uations we find regions 
define a soccel fu, y'res^^TLl 0 HI*'" 11!kI

1th1n the "»»* »« 
regions in which the q^lltTfictSJ" JSS^I' "l™ •,' adJa^"t 
hounds, indicating t*S liS.^^TÄ^ ^."ÄÄ!*., _., 

erratfc'behawo^l^resp^s ."Si^tÜV1? i4c;-"di"'« that this 
of the first pair of polfloci n^rS ?e '"troduction into the RIS 
the presence if poles ?n the Jis is iLM5'"'?0^ the ^»thesis that 

Para^ters in Pigs.^.Ä ITc^CV^l^T^l is 
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the parameter Sr (see Fig. 14a) that establishes the restoration limit 
which occurs at Aa, = -0.036A. 

Thus for Case II, the limits on Aa, are a series of isolated small 
scale regions rather than large scale bounds present in Case I. 

Now consider Figs. 15a, 15b and 15c. These graphs indicate that 
over the entire range of Aa, in Case III {a1 = 0.75x), there are only 
small scale regions in which the restoration parameters remain within 
the bounds defining a successfully restored image. Again, these 
regions are defined by the points where the parameter Sr exceeds 
lower and upper bounds. However, the primary difference between 
small scale regions in Cases II and III is their width, which is 
ably narrower in Case II 
between the two cases is 
RIS as seen in Fig. 12. 

its 
the 
notice' 

(when Aai > 0).    Another basic difference 
the initial  location of the poles within the 
In Case III, the poles are initially (i.e.. 

when Aaj = 0.0) further removed from the point  |Kx| = Km. 

The important consequence of the Case II and Case III studies 
that the presence of RIS pole loci imposes limits on Aa,, which in 
define a region oF successful image restoration. These limits are 
series of isolated small scale regions along theAai axis in Figs. 
and 14a. 

is 
turn 
a 
13a 

Next, an expression is derived that relates the presence of RIS 
pole loci  to the magnitude of Sr.    The restored Strehl ratio   (Sr)  is 
easily calculated if we remember that Sr is the spatial domain analog of 
the D.C. value in the frequency domain (see Chapter III, section E). That 
is, Sr is the average of the frequency components as defined in Eq.(72a). 

63   63 
(72a)      Sr =    ^     £    R(p AKx,q AK 

p=0 q=0 
y, aj, 0, Cj, Aaj, 0, AC!) 

Substituting the discrete RIS (obtained by substituting Eqs.   (34a)  and 
(34b) into Eq.  (58) with aj = c, and Aa1 = AcJ into Eq.  (72a) we obtain 

(72b)      Sr ■ 4 TL)(1 -I^V^-IP AKxl)AaiP AK> 

Cot (2Tr/Kni2)(2Km-|p AKx|)ap p AKX 

The terms under the summation sign in Eq.   (72b) are graphed for Cases 
I,  II and III in Figs. 16a, 16b and 16c, respectively.    These graphs, 
which are the envelopes obtained by connecting the discrete frequency 
components, clearly indicate the presence of poles suggested in Fig.  12. 
Furthermore, the graphs suggest an important question.    How is the value 
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(b) 

^ •- K1, 

CASE m  a, «0.75X 

*► ^c. 

(c) 

Fig.  16.    (a)    Case  I a!  = 0.25A. 

(b) Case II a] - 0.5(K 
(c) Case III a, ■ 0.75^ 
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of Sr, which is calculated using Eq.   (72b), affected by whether or not 
a pole exists exactly at a discrete frequency component?    In order to 
answer this question, a relationship is derived to relate the magnitude 
of Sr to the possibility that a discrete RIS frequency component was 
evaluated at a pole. 

The Cot argument Z(Kx,Ky) taken from Eq. {72b) is graphed in 
Fig. 17a for Case II (aj ■ 0.50x). A more detailed graph of this 
argument in the neighborhood of the point Kx - K_ is presented in 
Mg.  17b.    (Fig.  17b is exaggerated for clarity.) 

Examining Fig.  17b, we see that when Aai =0.0,  the Cot argument 
I equals the value n  at a point half way betwe-n the discrete frequency 
components 15 AKX and 16 AKX.    Thus, since the ordinate of the discrete 
argument never actually equals the value T,, the discrete RIS will  not 
contain any true poles.    Hence the parameter Sr, which is calculated 
from Eq.   (72b), will  be finite.    However, referring to Fig.  17b,  for 
the curve defined by Aa, ■ Aa,1, the Cot argument Z does equal the 
valuej at 15 AKX and 16 AKX {Km ± ^Kx)  and hence RIS poles do exist, 
i-or this situation, the summation over all  frequency components will 
obviously exceed the limits imposed on Sr.    When the value of an again 
increases to the value a, + MH^'  and then again to a, + Aa/", the 
Cot argument behavior is analogous to that of Aa,  ■ 0 and Aa, = Aa  ' 
respectively.    That is, poles do not exist in the RIS for \a] = fra,1,5 

but they do exist for Aa, = ^l" '.    Thus, based on this analysis and 
the behavior of Sr exhibited in Figs.  13a, 14a and 15a, it seems 
natural  to assume that small scale regions, in which scccessful  image 
restoration occurs, will exist for values of Aai  in  ranges similar to 
A a Aa- ^.Mi"/  (see Fig.  17b).    That is, successful  restoration 
will exist in regions which are bounded at each end^by^Sr'greatly ex- 
ceeding its established limits.    This assumption is verified in Fig    18 
which is a more detailed graph of Sr for Case II  (a.  = O.SOX) where' 
Aa, > 0      In this graph many small scale regions are apparent and each 
one is bounded by Sr greatly exceeding the limits Sr = 2.0 or Sr ■ 0.50. 

The data for Fig.  18 was obtained by using the same computer pro- 
cessing techniques employed in Cases I,  II and III but with finer 
resolution in the parameter Aaj  (i.e., Aa, = nO.001  , n = 0,1,..-  ). 

Next, we show that indeed the small  scale regions are bounded by 
those values of Aa! which result in the Cot argument Z equalling the 
value .at one or more discrete frequencies causing Sr to exceed the 
limits defining a successfully restored image.    In order to prove this 
tact, an equation is derived that specifies the magnitude of Aa, 
npquired to shift a given ordinate value (w in this case) of the Cot 
argument p AKX (p = m/2    m integer)  units along'the K 
Fig.  17b). axis (see 

For the first step of this derivation we 
continuous Cot argument (from Eq.  (58)) is: 

must recall that the 

, 
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Fig. 17a.    Graph of discrete Cot argument Z(KX,KV) X'V 

Fig. 17b. Graph of Z vs. Kx near the point Kx = K, m- 
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(73) Z=  (2./^) äp{.Kx2 +2KmKx)      . 

Rewriting Eq.  (73) in  terms of the discrete frequency components 
Kx - n AKX and 1^ = Ib'i AKX (where n is an integer) we obtain: 

(74) Z =  (271/240.25) ap(-n2 + 31n)      . 

Eq. (74) is next expanded about the point Kx = Km by letting  JpäKJ 
(p = m/2, m = integer) mrasure distances along the abscissa with the 
point Kx = Km considered as the origin.    Thus the Cot argument re- 
written as a function of the variable p is: 

(75) Z - (2ir/240.25) ap(240.25 - p2). 

Finally, substituting ap = a,  + Aa.  and solving for Aa,,  the desired 
equation is obtained:    r 1 i 

(76) Aa, =  (Z/2.)(   240-25     ]   - a,      . 
v240.25 - p2/ 

Eq.  (76) specifies the magnitude of Aa,  required to shift the Cot 
argument Z, p = m/2 (m integer) units along the Kx axis. 

Applying Eq.  (76) to Case II, in which a, = 0.50A and Z = T when 
A«, = 0.0 (see Fig. 12), we have: 

(77) Aa,  = 0.50' 
1240.25 - p2 i 

Table 2 lists the values of Aa^ calculated from Eq.  (77),  for p = m/2 
(m = 1.2,...17).    The values p = m/2 (m odd)  correspond to those cases 
in which the Cot argument exactly equals the value ir  at one or more 
discrete frequency (see, for example, the Aa,  = Aai'  curve in  Fig    17b) 
and poor image restoration is obtained.    The values p = m/2 (a even) 
correspond to those cases in which the value TT  occurs exactly half way 
between two adjacent discrete  frtquencies (see. for example, the 
Aa! = Aa!      curve in Fig.  17b) and good image restoration is obtained. 

Next, a series of computer processed images was generated using 
the same processing technique described earlier for Cases I, II and III- 
however, the values for ^ were taken from Table 2.    The values of Sr ' 
calculated for each restored image are graphed in Fig. 19a and 19b 
ng. 19a is a superposition of the data obtained from Table 2 over'the 

59 



0.03 0.06 0.09 0.12 0.15 
Aa, 

Pig.  19a.    Sr evaluated at points listed in Table 2 
and superimposed on Case II    Sr versi's 
:.a1 graph. 

:i 

. 

.1 

60 



Sr 
^* 

IT 
Ql =0.50\ 

2ir 
oi. 

Cu-X 
(0.50\) 

WAm 

X   THE  VALUE TT   OCCURS 
AT   A  DISCRETE   FREQ. 

•   THE VALUE TT OCCURS 
HALF  V/AY   BETWEEN  TWO 
FREQ.   COMPONENTS 

Fig.  19b.    Sr evaluated at points listed in Table 2 
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TABLE 2 

aj = 0.50A 

P = h Aa   = 0.0005> 
= 1 0.0021A 
- lh 0.0047A 
= 2 0.0084A 
= 2h 0.0133A 
= 3 0.0194A 
= 3% 0.0268A 
= 4 0.0 356 A 
= 4Js 0.0460\ 
= 5 0.0580A 
= 5H 0.0720\ 
= 6 0.0881A = e1.. 0.1067A 
=  7 0.1281A 
=  7', 0.1528X 
= 8 0.1815> 
■ 8Js 0.2150A 

Case II results while Fig. 19b is a superposition of this data over the 

D I m/TÄ? ^ II data (i-e" Aai = n0-001 data)-    Note that when p - m/2 (m odd)  the occurrence of the Cot TT situation does indeed cause 
Sr to grossly exceed its upper bound.    When p = m/2 (m even), the values 
of Sr are finite; in fact, in all but one case, shown in Fig! 19a, 

fully üenTred l^1" ^ aCCeptable b0Unds for Sr defl"nin9 a succ"s- 

(i 
Finally, we derive an equation that expresses how rapidly the poles 

e., points corresponding to p = m/2 where m is odd in the above 
analysis) migrate through the RIS as a function of Aa,      This 
expressed by taking the derivative of the Cot argument Z with 
to Adj.    The result of this calculation is; 

point is 
respect 

- - 

.1 

(78) 
»Aa, 

(2Tr/Km2)(2K_-  |KJ)K 

which is graphed in Fig. 20 as a function of Kx.    Fig. 20 demonstrates 
that for a given perturbation Aa^ the poles mfgrate f™ on™ sc^e 
fn.q^Cy c^or}eni t0 ^ r,ext ?djacent component most rapidly oX 
for the smallest change in AaJ when they occur near the point K   = Km 
This fact corresponds exactly with the behavior seen in Case II X       m' 
(a1 = 0.50A) where rapid fluctuations occur in Sr as Aa,  increase in 

obfe^ved'i  'casr??!  T ^ ^    Fig- 20 also exPlai^ ^UhJor observed in Case    I    where Sr does not vary as rapidly as a function 
Aa !• i-or case III (Fig. 14a) when ^  is positive, the poles migrate 
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Fig. 20.    Graph of versus Kv 

farther away from the point Kx = 1^ and the small scale regions have 
larger separations; however, when Aa,  is negative, the opposite effect 
is observed. 

Wo can now generalize from these results.    At best we can expect 
only small scale regions in which the imaging processing technique will 
produce a successfully restored image.    In fact, from the data presented 
in Figs. 13a,  14a and 15a we can calculate the percentage of the aai 
range over which successful restoration results occur.    For the three 
cases, these percentages are: 

CASE I 
CASE II 
CASE III 

85.5% 
14.0% 
71.0% 

The presence of these small  scale regions will obviously create g 
difficulties in the analysis of the restored images. 

reat 

The fact that a particular image was not successfully restored 
could be the result of one of two factors.    First, the object and point 
source could actually have been located in different isoplanatic patches 
By definition of an isoplanatic patch (see Chapter I) we would expect 
poor quality restoration in this case.    Second, the atmospheric effects 
which degraded the image might have created a situation in which the 
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Cot argument in the RIS assumed the value  M at one or more discrete 
frequency components.    As we have seen, this event will  grossly perturb 
the RIS so that when it is inverse Fourier transformed, the restored 
image does not meet the restoration criterion established in Chapter 
III, section E. 

. 

C.    Summary 

This chapter has been devoted to the analysis of three cases of 
restored images.    The three cases were defined by the values assumed 
for the wavefront parameter äiicj = a-^).    Each case was analyzed for 
a series of perturbations Aa^ACj =Aa1)      in the initial  value for a^ 
The restored image quality parameters, restored Strehl  ratio  (Sr), 
integral  scale (r), and mean squared error {cm) were calculated for 
each restored image, and then graphed as a function of Aa^    From these 
graphs, the regions of successful image restoration are defined between 
the points at which Sr exceeds its upper and lower bounds.    The exceed- 
ingly large values for Sr were then related to whether or not a pole 
was evaluated exactly at a discrete RIS frequency component. 

Finally, it was demonstrated that the number of small  scale regions 
for a given restoration  range (i.e., range of ap) is dependent on the 
initial location of the poles.    For poles initially located near the 
point Kx = Km, the poles migrate rapidly from one discrete RIS frequency 
component to the next adjacent frequency component.    T^us, the regions 
of successful image restoration as a function of Aa]  are very narrow 
(as small as 0.0005A).    For poles initially located at a distance from 
the point Kx = Km, larger variations in Aaj are required to shift a 
pole from one discrete frequency to the next adjacent component.    Thus, 
the regions of successful image restoration encompass a larger range 
of Aaj. 

The important point established in this chapter is that image 
restoration is a much more complex process than dividing a degraded 
image spectrum by a MTF and then inverse Fourier transforming to obtain 
the restored image.    It has been shown that the poles introduced by 
this division operation limit image restoration to a series of small 
regions defining perturbations in the reference point wavefront that 
are not present in the point image wavefront. 

.. 
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CHAPTER  V 
REVIEW AND CONCLUSIONS 

A.    Review and Conclusions 

This study has been devoted to the task of defining the limits for 
which the Fourier transform method of image restoration may be used 
to successfully restore turbulence degraded images obtained from a 
ground-based telescope. 

In order to define the limits over which successful Image restora- 
tion could occur,  a turbulence degraded imaging system was modeled, with 
the assumption that the degrading effects could be expressed by expand- 
ing the E-field phase distribution across the telescope input aperture, 
in terms of a general second order quadratic equation.    This expansion 
was used to define the degraded E field for a point object and the 
degraded E field from a reference point, which wa^  assumed to be 
located in the transmitter plane with the point object.    In order to 
model  various reference point - object point separation, the reference 
point E-field phase distribution included a perturbation term in the 
quadratic phase coefficients. 

The actual  restored image analysis discussed in this study was 
based on a simplification of the general quadratic phase distribution 
discussed above.    The specific case analyzed included only the spherical 
wavefront distortion in the E-field phase distributions.    With the input 
aperture considered as a spatial  frequency plane  (see Chapter H-B)    the 
object point and reference point E-field phase distributions for the 
spherical wavefront distortion case are, respectively: 

j(d./k)2  (ajK2   + CjK' ) 
(79a)      Ea(Kx,:y - e     i 1 x l * ' 

(79b)      ^.^.e^V^^i^^Mc.^c,)^) 
av x' y' 

The parameters al and Cj  represent gross wavefront distortions while 
the parameters hd)^ and ACj  define the phase perturbations resulting 
from the object point and reference point waves propagating through 
different turbulence conditions.    (See Chapter II, section B and section 
C for details.) 

Eqs.  (79a) and (79b) were used as inputs for calculating the 
degraded image spectrum and the modulation transfer function (MTF), 
respectively.    Then, using linear system theory,  the restored image was 
obtained by ca culatmg the inverse Fourier transform (The Fast Fourier 
Transform (FFT) was  used for computer processing (see Appendix C) of the 
degraded image spectrum divided by the MTF or system transfer function.) 
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The restored image spectrum (RIS) obtained by dividing the de- 
graded image spectrum by the MTF was subjected to a complete analysis. 
It was shown that the presence of poles  (points at which the mathe- 
matical  function  takns on an  infinitely  large value)  in  the RIS 
definitely affected  the  restored image (luality.     Diuations were 
derived that related the number and position, within the RIS, of these 
poles to the parameters ä^   + &«]  and c,  + AC,. 

The restored image quality was defined in terms of three resto- 
ration parameters:    the restored Strehl  ratio (Sr) which measures the 
peak image intensity, the integral  scale  (r) which measures image 
width, and the mean squared error (cms) which are discussed in detail 
in Chapter III, section E.    Limits were placed on these parameters 
which defined a successfully restored image. 

11 

A series of degraded images, generated using the model  discussed 
above, was restored using a digital computer to inplement the  inverse 
Fourier transform restoration method.    The degraded images were divided 
into three classes defined by the value assumed for the parameT^r 
a1(= cj.    For each such class, a series of restorations were performed 
for perturbations Äij = n(0.006A)  (n = ±0,1,2,---41). 

The results of the analysis of these restored images, in terms 
of the restoration parameters, indicated that the presence of poles in 
the RIS did indeed cause the  restored image to fail   to meet ^ne re- 
stored image quality criterion.    It was determined that the quality 
parameter Sr was the most sensitive indicator of restored imaqe quality, 
and hence this parameter was used to define the ranges of successful 
image restoration. 

The conclusion drawn from this study was that a discrete KIS 
frequency component evaluated precisely at a pole was the major factor 
that caused Sr to greatly exceed its bounds indicating that the restored 
image failed to meet the quality criterion.    As these poles migrated 
from one discrete spatial  frequency component to the next adjacent 
discrete component, a region of successful image restoration was 
bounded.    These small  scale regions were found to be narrower in width 
(the width expressed in terms of Aa.) when the poles originated near 
the spatial  frequency spectrum midpoint Kx = K .    Poles initially 
located some distance from this point Kx = Km were found to generate 
much wider small  scale regions of successful image restoration. 

For the three cases studied, it was shown that the sum of these 
small scale regions ranged from U% to 85.5% of the processing range 
that was considered.    Obviously, the 14.0% case indicates a very severe 
limit imposed on the   Fourier transform image restoration method. 
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u The results obtained from this study support the following six 
conclusions: 

1. The major problem in the restoration of images is the 
presence of po^es in the restored image spectrum (RIS). 

2. The restored Strehl  ratio (Sr) is the most sensitive 
of the three restoration parameters (integral  scale, r, 
and mean squared error, 6^, are the other two restora- 
tion parameters)  used to measure restored image quality. 

3. The ability to successfully restore a degraded image 
does not monotonically decrease with increasing wave- 
front distortion but,  rather, is oscillatory in nature. 

4. Given a gross wavefront distortion, there may be many 
small ranges of wavefront perturbations in which 
successful  image restoration occurs. 

5. To assure restoration in the a1 = 0.50X worst case 
considered here, Aa. must be less than or equal to 
0.0005A. 1 

6.    A orobabilistic measure of successful  image restora- 
tion as a function of gross wavefront distortion 
appears to be a useful discriptor. 

B.    Suggestions for Further Study 

In this section, we propose suggestions for the possible extension 
of the work described in this study. 

The next step beyond the work covered here might be that of em- 
ploying a smoothing function such as a two-dimensional  Gaussian or 
triangular function to smooth out the effects of poles present in the 
restored image spectrum (RIS) ?nd hence improve the restored image 
quality.    Further, this work suggests the need for investigating the 
validity of the discrete representation for the quotient of two 
functions as in calculating the RIS.    The basic question to be 
answered is:    do poles in the RIS result in effects such as a 
spatial domain analog to aliasing? 

The other important extension would be that of including the cross 
term parameters bi and Ab?  in the model  for the degraded E-field wave- 
front.    We would then be interested in the location of the new RIS pole 
loci and the effects of these poles on the size of the regions in which 
successful image restoration is obtained. 
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APPENDIX A 
THE APERTURE PLANE CORRELATION FUNCTION 

plane cot-relation function CfK^K ) Pe 

sit. Un^S Ä^i of SeMe^'Äi^Ä^SI i"te"- 
telescope Input aperture are Fourier transform n,ates.    Cis    from 

oo 

(20) I(x2iy2) ^  (i/27T)2 //w(Kx . kx)Ky . k j w.(.kxs.k , 

EatKx - kx.Ky - ky) Ea*{-kx,-ky) dkx dky     . 

(19,    w(vv ■ j1        :^ K;< \ 
1° otherwise 

we h.S sho"nnfnkEV tl)^. " *> "* ""W* *>■  W by (2.)^. 

I2') 'i'^^l = (2'.)?I(x2,y2)«c(Kx.Ky)     = 
00 

|w(Kx+kxsVky) W*(kx,ky) Ea(Kx+kx.Ky+ky) Ea*(kx.ky)  dkx dky 

where C(Kx,Ky) is the aperture plane correlation function. 

We now are interested In evaluating Eq.  (21) for the casp WHP^ 
the Input field distribution is given by Eq. (14) as^ 

(14)        E.^.U - eJ ^^^ ^ * ^ 

the  ÄrÄfi.ilt'Ä^JS^ - •"•<" *■  (") which ,s 
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j(di/l<)2(aKx2 + bKxKv + cK 2) 
(23) C(KX,KV) = e      1 X X y y xx',Ny 

iWk)'- 
W(Kx+kx,Ky+ky) W*(kx,ky) e 

l(2aKx + bKy)kx + (2cKy + bKx)kyl 
dkx dky 

Since the aperture function restricts the input field at ±Kms 
we can determine the limits of integration by considering the correla- 
tion of the two aperture functions.    Fig. Al, below, shows the two 
aperture functions involved in the Kx correlation. 

i 
W(ACx4-kxl/Cy -»- ky) 

^-w(k8,ky) 

i 

«V '*m -*n    -> <t + Km      -' fm K 
              —j 

m 
Kx 

Fig. Al. 

The complex conjugate notation ( * ) may be dropped from W (kx,k ) since 
the aperture function is a real function.    Usina Fig. Al to define the 
limits of integration, we find that when Kx > 0, the limits on k    are 

A 

(Ala)        -Km < kx  < -Kx + K, m 

and when Kx<0, the limits jn it are 

(Alb)        -K^K^   kx<   Km 
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Ky coSS.^«^ J; a« i^r^s^ - - 
(A2a)        for Ky > 0      ,    as 

(A2b)        for Ky  ^0      ,    as 

-Km   < ky   < -Ky + K,,,    and 

-Ky-Km<   ky  < K^ 

integrStlon^'E   h3\-    egr ti^r s"   PnaSHtheHP.r0dUCt 0f a kx and a ky 
by Eqs.   (Al) and   A2)    K Jhlt thf .nl'^60 int0 tW0 pa'ts  defined 
since its effect   s now reflected in thTil^ ^J10" can be d^^ we have: renected in the limits of integration.    Thus, 

(A3) 

K+Km 

J(di/k)2(aKx2 + bKxKy + cKy2) 

< 

C(KX ,Ky) = e 

j(d1-/k)2(2aKx+bKy)kx 

xm 

'm 
J(di/k)2(2aKx+bKy)kx 

'h'^m dk 

dkx +       |    , 

"Ky+Km K 
f     J(di/k)2(2cKy+bKx)kv 7 
j e X" | ^ idi/k)2(2cKy+bKx)ky 

m dk 

tt Tf. s "ASS isvsi'f s;;: r;r ;- 

For the first term, when Kx > 0. we have: 

(A4) j(d1./k)2(2aKx+bKy)   'Kx+Km 

f j(di/k)2(2aKx+bK )kx Je x    y   x dk   =  
"Km X     J(di/k)2(2aKx+bKy) 

e.l(di/k)2(2aKx+bKy)(.Kx+Km)  ^  J-(di/k)2(2aKx+bKy)Km 

-K m 

j(di/k)2(2aKx+bK ) 

, 
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j(di/k)2Js(2aKx+bKv)K x ""y'^x 

J2(d1-/k)2(2aKx+bKy)2j 

J(di/k)2(2aKx+bKy)(Km-55Kx) 

•j{d1./k)2(2aKx+bKy)(Kni-JsKx) 

W*^*J?"811^ in E^  (A4) can be written in te function as: rms of the Sin 

+K, m 

(A6) j(d1/k)2(2aKx+bKy)k y'Kx 
e dkv = 

id1./k)^(2aKx+bKy)Kx    Sin(d./k)2(2aKx+bKy)(K-)sKx) 
y/v'Nm ^X' 

Js(di/k)2(2aKx+bKv) 

For the second Kx term in Eq.  (A3) we have for Ky <  0; 

(A7) J 

■Kx_l<m 

j(2aKx+bKv)kx e 
dkx = - 

j(2aKx+bK )k y'Rx 

j{2aKx+bKy) 

sm 

-Kv "Km 

j(di/k)2(2aKx+bKy)Krn_ -J(d17k)2(2aKx+bKy)(Krn+Kx) 

J(d1./k)2(2aKx+bKy) 

J(d1-/k)2J3{2aKx+bKv)K x'^y^x 

}ä(di/k)-2(2aKx+bKy)2j 
p-i /k)2(2aKx+bKy)(Km+y<x) 

-j(di/k)2(2aKx+bKy)(Kn]+}5Kx) 
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Again,  this last equality in Eq.  (A7) can be written in terms of a 
Sin function as: 

(A8 

-K +K x   m . 

' i 
J(di/k)2(2aK +bK )k 

e *     y    x dk 

-J(d1-/k)2?2(2aK +bK )K 
e       1 x     y' x Sin(d1-/k)2(2aKx+bKy)(Km^2Kx)- 

.     i2(di/k)2(2aKx+bKy) 

Thus for the Kx correlation we have from Eqs.  (A6) and (A8) that; 

■Kx+Km . 
J(di/k)2(2aKx+bKy)k 

xm 
y'^x (A9) !       e      " '■   Adkv+  I       .-^'^  -^x--y/-x j(di/k)2(2aKx+bKv)k1 

e 'dk, 

"Km *%m*m 

= e 
J(dl/k)2J'2{2aKx+bKv)K x ""y'^xl "5in(di/k)2(2aKx+bKy)J'2(2Km-Kx) 

^(d1./k)2(2aKx+bKy) 

Sin(d1/k)?(2aKx+bKy)%(2Km+Kx)' 

1s(d17k)2(2aKx+bKy) 

We next multiply the first Sin term (defined for Ky > 0) by (2K -K  )/ 
/o>".x    an? the second Sin term (defined for KY<   0) by (2K +KmWX 

(2K|KX) which casts these terms in the fonn oAhe famil  aAin x/ 
or ^inc function.    Thus the right-hand side of Eq.  fA9) become 
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(A10)     =ed(di/k)2j5(2aKx+^)Kx|(2Km.Kx) 
S^0^2^^^^-^) 

(di/k)2(2aKx+bKy)J5(2Kni-Kx) 

Sin(di/k)2(2aKx+bKy)J'2(2KmTKx)" 
+ (2K-+ICJ 

(di/k)2(2aKx+bKy)is(2Km+Kx) 

Eq.  (A10) may be written in a more compact form by enploying  |KY|  ard 
remerrbenng that the first ten. in Eq.  (A10) is ctefined for K   ^O 
and the second tenr, is defined for Kx  i0. x " 

(All) = e 
j(d-'/k)2i'2(2aKx+bKy)Kx 

(2VlKxl) 

Sin (di/k)2(2aKx4-bKy)i5(2Km-|Kx|) 

{d1/k)2(2aKx+bKy)Js(2KIT,-!Kx|) 

substUuti-ngl" ^ SOlution t0 the r'ecorui ^^keted term in Eq.  (A3) by 

Kx for Kv 
Ky for KJJ 
c     for   a 

into Eq.  (All) to obtain: 

(A12)   - e
j(di/k^2cKy+bKx)Ky (2^[K  ^ Sin(di/^(2cybKx)iä(2Kr,|-|Ky[) 

y        (d1-/k)2(2cKy+bKx)M2Km-[Ky|) 

Substituting Eq.  (All) and (A12) into Eq.  (A3), we see that the 
multiplicative phase tem is cancelled leaving us with: 

(A13)        C(Kx.Ky) =  (2^-1^1) 
Sin(di/k)2(2aKx+bKv)Js(2Km-|KJ) 

(2Km-|Ky|) 

(di/k)2(2aKx+bKy)!s(2Kni-lKx|) 

Sin(di/k)2(2cKy+bKx)i,(2Km-|Ky|) 

(di/k)2(2cKy+bKx)Js(2Km-|Ky|) 
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Eq.  (A13) which is defined for: 

(A14)        -2Km <- Kx <- 2K, 

■2Km <- Ky <- 2Km 

is the desired result and is used in Eq.  (24) of Chapter I. 
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APPENDIX B 
CALCULATION OF THE RESTORED IMAGE SPECTRUM 

ID(K ll fi? aPPend^. we calculate the restored image spectrum fRIS) ^RlKx.M given in Chapter II    Ea    l?Q)    f^m +t,o T     ^j-^rum [Kib) 

x' y'* 

(29) lR(Kx.Ky) . ^i^' 
H(Kx,Ky) 

Eas    ISJ/SIT^^ C(K^Ky) and H(Kx.Kv) are given in Chapter II, 
5?ii  in    i    d (28). respectively.    The fbTlowing derivation of the RIS 
will   involve only the Sine terms multiplied by (2Km-|Kv     in Eos    f24? 
and (28)     The second Sine tem multiplied by (2&lOJi    obtained 
directly from the following derivation' by making ?helibsi?tSt?ons? 

(Bla)       Ky   for   Kx 

and 

(Bib)        Cj for a1 

and 

(Blc)       AC1    for   Aa,    . 

in tli|URIs!tUt1n9 theSe SinC temS int0 Eq'  (29)' we have as one term 

(B2) Sin{(di/k)2(2aKx+bKy)^(2Kni-|Kj)) 

(di/k)2(2aKx+bKy)J5(2Km-|Kx|) 

S1n{(di/k)2f2(a+Aa)Kv-H(b+Ab)Kv]}s(2Km-|Kx[)| 

(di/k)2[2(a+Aa)Kx+(b+Ab)Ky]Js(2Kni-|Kx|) 

asa ratio of two Sin9 functlXÄ^J ^l^c^Z?^ ffl 
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(B3) 
2Aa1Kx + Ab,^ 

2aiKx •■ biS . 

Sin l(2w/V)(2a1 Vb1Ky)%(2Km- |KX |)[ 

We next add and subtract: 

{B4) 

from the argument of the Sin function in the n 
which we define as: 

(B5) 

AY ■   (2,i/Km
:,){2Aa1Kx + Ab1Ky)Jä(2Km-|Kx|) 

umerator of Eq.   (B3) 

Y- (2w/Kn|2)(2a1Kx + b1Ky)M2K|J1-|Kx|)      . 

Thus, Eq.  (B3) becomes: 

"   + 2Aa1Kx + AbjKy I   Sin(Y+AY- AY) 

2a1Kx + b^    J     SinCY+AY^ 

Applying the trigonometry identity. 

Sin A-B ■ Sin A Cos B - Cos A Sin B      , 

to Eq.   (B5), we have: 

2Aa1Kx + AbjK 
(B6) 1 + 

2a1Kx + b^ 

which simplifies to: 

Sin(Y+AY) Cos AY - COS(Y+AY) Sin(AY) 

Sin{Y+AY) 

(B7) 1 + 
2Aa1Kx + Ab^ 

2a1K   + b^. 
Cos AY - Sin AY Cot(Y+AY) 
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Substituting Eqs. (B4) and (B5) into (B7), we have: 

(B8) 1 + 
ZAa^ + AbX 

2aiKx + biKy 

Ccs|{2./Km2)(2Aa1Kx - ^K^iZ^K^X   - 

Sin((2./Km2)(2Aa1Kx • tb^HZ^lK^)} 

.Cot{(27r/Kni2)[2(a1+Aa1)Kx + {b1+Ab1)Ky]is(2Km-|Kx|)} 

As stated earlier, the second term in the RIS is obtained by making the 
substitutions indicated in Eqs. (Bla), (Bib) and (Blc) into Eq. (88) to 
yield: 

(B9) 1+ 
2AciKy + ^ih 

2c1Ky + b,^ _ 

[cos{(2w/y)(2AC1Ky - Ab^^Z^-lKyl)]    - 

Sin((2./Kn2)(2AClKy-Ab1Kxh(2Kni-|Ky|)| 

•C0t^2Tr/Kffl2)[2(a1+AC1)Ky -  (b1+Ab1)Kx]'2(2Krn-|Ky|)l 

The desired RIS. R(KX,K   a .b^c   Aa^Abj.AC^, in Eq.  (31) of Chaptern 
is the product of Eqs. {BS) and (69). K      ii 

(BIO)        R(Kx,Ky.a1.b1,c pAaj.Abj.ACj) =   : -   1 + 
2Aa1Kx + AbX 

2a1Kx+Ab1KyJ 

|^Cos|(2./Km2)(2Aa1Kx - Ab^^HKj)}-Sin/^/K,/) 

•(2Aa1Kx-Ab1Kyh(2Km.|Kx|)].Cot|(2Tr/Km2)[2(a14Aa1)Kx-(b1+Ab1)Ky] 

2ACJK   + Ab^^ r      , 
|Cos|(27r/Km2)(2AC1Ky-Ab1Kx) •^2Km-|Kx|)} 

2ciKy + bi^ j 
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,)5(2,(m-|Kyl)}-S1n|(21r/Km2)(2Ac1Ky-Ab1Kx)Js(2Km-|Ky|)| 

The above equation is the desmd result used in Chapter II. Eq.   (31), 

:. 
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APPENDIX C 
THE FAST FOURIER TRANSFORM (FR) 

In this appendix we discuss pertinent aspects of the Fast Fourier 
Transform (FFT) algorithm and the Discrete Fourier Transform (DFT) from 
which it is derived.    Attention is also given to both frequency and 
spatial  domain discrete variables and their relationships with the 
spatial  domain sampling rate. 

It is a well  known fact that for a frequency band-limited system, 
the time waveform is exactly described by a Discrete Fourier Series 
(DFS), when the time function is sampled at a rate greater than or 
equal to the highest frequency component in the pass band.    This 
relationship applies equally for a n-dimcnsional  system.    The Discrete 
Fourier fransform (DFT) applied to the DFS is a bi-directional mapping 
operation with mathematical properties analogous to tnose of the 
Fourier integral.    The Fast Fourier Transform (FFT)  is a method for 
efficiently computing the DFT of a n-dimensional series of discrete 
data samples.    For the purpose of this study, we restrict our attention 
to the two-dimensional FFT.    The FFT takes advantage of the fact that 
the coefficients for the DFT may be calculated by using a parallel 
iterative technique rather than the coefficient-by-coefficient direct 
approach.    For a two-dimensional array of dimension N by N, where 
N = 2"! (m integer), direct calculation of the DFT coefficients requires 
N4 arithmetic operations; however, the FFT, using the '■terative tech- 
nique,  requires only 4N2log2N ■ 4N2m arithmetic operations  [181.    When 
N = 64, as in this study, the FFT requires only 4m/N2 = 24/409b or 
0.6% of the possible Hk arithmetic operations, and hence computer time, 
required by the di^ct method.    Not only does the FFT reduce the re- 
quired computer time by 99.4%, but it reduces the computer round off 
errors by the same factor [18]. 

The defining equation for the DFT is: 

(Cl) 1U-    l     I   1,3 e-J ^ ^y       ) 

R=l S-l 

where  IgS is an Nx by Ny array of discrete data samples and ITJ, the 
DFT of ID^, is an Nx by Ny array of discrete frequency components.    The 
inverse DFT is given by: 

(I-1)(R-1)      (J-1)(S-1) 
,      Nx     Ny ^       iZ-n{       Ü +    —7, ) 

(C?) U.. ■   1        V       T T     a0 Nx Ny        ; 

^ ^S " WIT   i.       l lil} 
e 

Vy 1=1 J=l 

The validity of this transform pair can be easily verified by substi- 
tuting Ijj from Eq.  (Cl) into Eq.  (C2) and using the orthogonal 
relationship for exponentials, which is: 

79 

—  ~  —— 



1 .   . ..i , mm tmi^^imm-^m^^m^ti i   i  *u*^m^rm*mmmim*^~''r immm^^mmi 

(I-1)(R-1)  (J-1)(S-1) (I-1)(M-1)  (J-1)(N-1) 
Nx    Ny       ^Trf   + )   -Z-nl +  ) 

{C3) I     J e'J "* ^       }
er

n       Nx Ny        ' 
1=1 J=l 

Nx Ny for     R = M 
S = N 

0 otherwise 

For convenience,  the DFT transform oöir is represented by the shorthand 
notation: 

(C4) IRS - IJJ      . 

We are assuming in this study that the frequency spectrum is band- 
limited at Kx = ±2Km and Ky = ±2^ (see Eq.   (21)); thus the sample 
spacing AX = Ay in the spatial  plane must be given by: 

(C5) AX = Ay   f2(27,/2Kni) =  (^2^)       . 

We further assume that the width, W, of spatial function equals an 
integral number of samples; that is: 

NXTT      Nyir 
(C6) W = NxAx ■ NyAy -  =        . 

2Km   a«, 
Substituting Nx = W/Ax and Ny = W/Ay into Eq.  (Cl) and (C2) and grouping 
terms in the exponents, we have: 

(1-1) (J-l) 

(C7) lu - 'I   "I loc e-^(~(R-1)AX + -^'-^ 
IJ      R=l S-l RS 

and 

(C8) 

(1-1) (J-l) 

hs = mr I.   llu eJ      w w !r    ^A lii ii1IJ 
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From Eq.  (C7), we see that IJJ is periodic with period 1/AX along the 
Kx axis and 1/Ay along the Ky axis; that is: 

I 

(C9) IT i = 1    ,      ,    , (n integer) K^' IJ      l+n/Ax,J±n/Ay        v a 

Also, we see that the sample spacing in the frequency plane is: 

(CIO)        AKX =  AKy =  1/W      . 

From Eq.  (C8), we find that % is periodic with period W along the x 
and y axes; that is: 

(C11)      IRS' Wj,S+nW (n integer) 

The sample spacing has already been specified as Ax = Ay.    Further, 
note that since the spatial domain period W = NxAx = NyAy (from Eq. 
(C6))  and the frequency plane periods 1/Ax = Nx/W and 1/Ay =^Ny/W 
(from Eq.   (C6)  are both directly proportional  tc Nx and Ny, IJJ and 
IRS a^e also periodic with periods Nx and Ny.    Thus, each array of 
Nx by Ny number represents one cycle of the periodic frequency and 
spatial domain functions. 

These results are summari^d in Fig.   ci for the one-dimensional 
case (i.e., Ii M IR), which simplifies the graphic presentation. 
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2W    x 

Fig.  Cl.    Discrete Fo jrier transform. 
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